IPv6 Addressing

Awareness Objective

• IPv6 Address Format & Basic Rules

• Understanding the IPv6 Address Components

 Understanding & Identifying Various Types of IPv6 Addresses

IPv6 ADDRESS FORMAT

IPv4 Address SYNTAX

W,X,Y,Z represent 8 bits converted to Decimal

IPv6 Address SYNTAX

XXXX: XXXX: XXXX: XXXX: XXXX: XXXX: XXXX: XXXX

Where each X represent a 4 bits hexadecimal field

2001:0DB8:1234:0000:0000:C1C0:ABCD:0876

• The following is an IPv6 address in binary form:

• The 128-bit address is divided along **16-bit** blocks:

 Each 16-bit block is converted to hexadecimal – taking 4 bits as one block- and delimited with colons. The result is :

IPv6 Address Capacity

IPv4: 32 bits or 4 bytes long

4.2 billion possible IP addresses

• IPv6: 128 bits or 16 bytes

- 340* 10³⁶ possible IP addresses
- 340 undecillion or 340 trillion trillion trillion
- 340 lakh lakh lakh crores !!

IPv6 ADDRESS RULES

Written in Case Insensitive colon 'hextet' notation

2001:0DB8:0000:003B:02AA:00FF:FE28:0C5A

2001:0Db8:0000:003B:02aa:00ff:FE28:0C5A

The leading zeros within each 16-bit block can be removed. However, each block must have at least a single digit

SUPPRESSION OF CONTIGUOUS SEQUENCE OF '0'

A contiguous sequence of 16-bit blocks set to 0 in the colon hexadecimal format can be compressed to "::", *double-colon*

2001:0:0:1234:0:0:0:C1C0

IPv6 Addresses in URL

In a URL, it is enclosed in brackets

http://[2001:1:4F3A::206:AE14]

If writing Domain name in the URL, Should use Fully Qualified Domain Names (FQDN)

AWARENESS OBJECTIVES

• IPv6 Address Format & Basic Rules

• Understanding the IPv6 Address Components

 Understanding & Identifying Various Types of IPv6 Addresses

IPv6 ADDRESS COMPONENTS

IPv6 ADDRESS HAS TWO PARTS

'ROUTING PREFIX' AND 'INTERFACE IDENTIFIER'

IPv6 Prefix & Interface ID

IPv6 Prefixes

- Certain fixed numbers of high-order bits of an IPv6 address may specify an ISP Network, a site within an organisation or a subnet
- Prefixes for IPv6 Addresses are expressed in the same way as CIDR notation in IPv4.
- An IPv6 prefix is written in /*N-length* notation; N -Decimal
- For example, 21DA:D3::/48 and 21DA:D3:0:2F3B::/64 ; /48 AND /64 are IPv6 address prefixes.

IPv6 INTERFACE ID

IPv6 Interface Identifiers

- **Fixed** Sixty-four LSB bits of IPv6 address. Guaranteed unique on the subnet
- In IPv4, hosts ID are of variable length depending upon the sub netting scheme whereas in IPv6 Interface ID is of fixed length as 64 bits
- Mapping IEEE 802 48 bit MAC address into 64 bit Interface ID (EUI-64)
- In IPV6, nodes can generate its Interface ID automatically

Mapping IEEE 802 MAC address into interface identifier (EUI-64)

AWARENESS OBJECTIVES

• IPv6 Address Format & Basic Rules

 Understanding the IPv6 Address Components

 Understanding & Identifying Various Types of IPv6 Addresses

IPv6 Address Scope

- Link-local: The scope is the local link (nodes on the same subnet)
- Site-local: The scope is the site of an organization (private site addressing) Now Deprecated
- Unique Local : Scope is the organization ; Similar to Private IPv4 addresses
- **Global**: The scope is global (IPv6 public addresses)

Unicast IPv6 Addresses

Global Unicast Addresses

Global unicast addresses are equivalent to public IPv4 addresses. They are globally routable and reachable on the IPv6 portion of the Internet

Format Prefix 2000::/3

First 3 bits (001) are fixed; next 45 bit prefix- collection of larger and smaller ISPs that provide access to the IPv6 Internet

Next 16 bits- Collection of subnets within an organization's site

The **interface ID** 64 bit- identifies a specific interface on a subnet within an organization's site

001 – First 3 bits are Reserved

- IANA has only released 1/8th of the entire IPv6 addresses
- For this, first 3 MSB are fixed as 001
- The entire global-unicast IPv6 address range is from 2000::/128 to 3FFF:FFFF:FFFFF:FFFFF:FFFFF:FFFF:FFFF/128, which is only 1/8th of the entire IPv6 address space!

IPv6 Address Allocation

REGIONAL INTERNET REGISTRY (RIRs)

Global Unicast Address Allocation

- IETF RFC 3177 recommended /48 block to end sites
- However, RIRs adopted /56 or /64 blocks
- Now IETF released RFC 6177, which allows flexibility to the RIRs in allocation of address block to end sites
- But it recommends blocks larger than /64 so that end sites may grow into multiple subnet.
- Top level ISP gets /30 or /32

OTHER TYPES OF IPv6 ADDRESSES

IPv6 Link Local Unicast Address (LLA)

- Hosts on the same link (the same subnet) use these automatically configured addresses to communicate with each other.
- Must for the Neighbor Discovery protocol
- The prefix Format for LLA is FE80::/64.
- The prefix Format for LLA

1111 1110 10	000000	Interface ID
(10 bits)	(54 bits)	(64 bits)

IPv6 Unique Local Address (ULA)

Replaces Site Local Addresses

Equivalent to Private IP addresses in IPv4

- Provides unique Private IPv6 addresses across all sites of an organization
- Removes The ambiguity of non- unique site-local addresses in an organization

SPECIAL IPv6 ADDRESSES

Loopback Unspecified

Special Unicast Addresses

Unspecified address

- 0:0:0:0:0:0:0 or :: (0.0.0.0 in IPv4)
- is only used to indicate the absence of an address
- The unspecified address is typically used by the node to know its address when plugged into the network.

Loopback address

- 0:0:0:0:0:0:0:0:1 or **::1** (127.0.0.1 in IPv4)
- used to identify a loopback interface, enabling a node to send packets to itself

IPv4-mapped IPv6 addresses

- IPv4-mapped address
 - 0:0:0:0:0:ffff:*w.x.y.z* or ::**ffff:***w.x.y.z*
 - used to represent the addresses of IPv4 nodes as IPv6 addresses
 - Used in Hybrid dual-stack IPv6/IPv4 implementations

IPv6 ADDRESS TYPES

UNICAST IPv6 ADDRESS

Multicast IPv6 ADDRESS

MULTICAST ADDRESS

- One to many communication
- IPv6 nodes can listen to multiple multicast addresses at the same time
- No Broadcast Address in IPv6

IPv6 Multicast address Format Prefix FF00::/8

ANYCAST IPv6 ADDRESS

Anycast IPv6 Addresses

- One-to-nearest
- Anycast addresses allow packet to be routed to one of a number of different nodes all responding to the same address
- are allocated from the unicast address space
- It cannot be distinguished from a Unicast address
- Used only as Destination Address and may be assigned to an IPv6 router only

Anycast IPv6 Address Uses

- Multiple Router on a remote subnet
- Multi Homing
- Multiple DNS server on a subnet
- Content delivery Networks
- IPv4 to IPv6 transition
 - <u>6 to4</u> networks

IPv6 Address Autoconfiguration

Address Auto Configuration

 Unique feature of IPv6 enabling automatic configuration of various types of IPv6 address by the IPv6 host

- By default IPv6 host can configure Link local address
 - FE80::EUI-64 Interface ID

 Site local and Global IPv6 address can also be configured automatically without the help of DHCP server

Stateless Autoconfiguration Example

MAC address : 00:2C:04:00:FF:56

EUI 64 Address: 022C:04FF:FE00:FF56

Auto configured Link Local Address : FE80::22C:04FF:FE00:FF56

Why does this matter?

- Manual configuration of individual machines before connecting them to the network may not be required.
 - Only the Router & Server require Manual configuration
- Provide **Plug-and-play** communication
- A large site with multiple networks and routers should not require the presence of a statefull address configuration server.
- Enables small sensors to work in IPv6 network
- It may be one of the killer feature of IPv6

Hence, to Summarise

- IPv6 address is 128 bit long written in eight block of hexadecimal field
- Almost Infinite numbers of IPv6 addresses
- IPv6 address has two parts Routing prefix and Interface Identifier
- Unicast, Multicast, Anycast IPv6 Addresses with specific format prefix
- Nodes can auto configure IPv6 addresses