

वर्गीय आवश्यकताओं के लिए मानक दस्तावेज़ सं: टी.ई.सी. 91010:2023

STANDARD FOR GENERIC REQUIREMENTS No. TEC 91010:2023

क्वांटम सुरक्षित एवं क्लासिकल क्रिप्टोग्राफिक प्रणाली

QUANTUM-SAFE AND CLASSICAL CRYPTOGRAPHIC SYSTEMS

दूरसंचार अभियांत्रिकी केंद्र खुर्शीदलाल भवन, जनपथ, नई दिल्ली-110001, भारत TELECOMMUNICATION ENGINEERING CENTRE KHURSHIDLAL BHAWAN, JANPATH, NEW DELHI–110001, INDIA

www.tec.gov.in

© **टी.ई.सी**., 2023 © TEC, 2023

इस सर्वाधिकार सुरक्षित प्रकाशन का कोई भी हिस्सा, दूरसंचार अभियांत्रिकी केंद्र, नई दिल्ली की लिखित स्वीकृति के बिना, किसी भी रूप में या किसी भी प्रकार से जैसे -<u>इलेक्ट्रॉनिक</u>, मैकेनिकल, <u>फोटोकॉपी</u>, रिकॉर्डिंग, स्कैनिंग आदि रूप में प्रेषित, संग्रहीत या पूनरुत्पादित न किया जाए ।

All rights reserved and no part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form and by any means - electronic, mechanical, photocopying, recording, scanning or otherwise, without written permission from the Telecommunication Engineering Centre, New Delhi.

Release 1.0, March 2023

TEC 91010:2023

FOREWORD

Telecommunication Engineering Centre (TEC) functions under the Department of Telecommunications (DoT), Government of India. Its activities include:

- Issue of Generic Requirements (GR), Interface Requirements (IR), Service Requirements (SR) and Standards for Telecom Products and Services
- Field evaluation of products and Systems
- National Fundamental Plans
- Support to DoT on technology issues
- Testing & Certification of Telecom products

For testing, four Regional Telecom Engineering Centres (RTECs) have been established, which are located in New Delhi, Bangalore, Mumbai, and Kolkata.

ABSTRACT

Cryptographic systems are essential in securing communication and protecting sensitive data from unauthorized access. In recent years, the threat landscape has evolved rapidly, with quantum computers posing a significant threat to classical cryptographic systems. Classical and quantum-safe cryptographic systems are necessary in the present scenario for ensure secure communication and protect sensitive data. This document describes the generic requirements and specifications of classical and Quantum-safe Cryptographic systems.

This standard covers the requirements related to the secure implementation and operation of a cryptographic system, including functional capabilities, interfaces and interoperability requirements; roles, services, and authentication; software/firmware security; operating environment; quality requirements, safety requirements, Electro Magnetic Compatibility requirements, self-tests, etc. Guidelines to procurers for product procurement and operations have been specified.

Table of Contents

FOREW	ORD	3
ABSTRA	\CT	3
TABLE (OF FIGURES	7
LIST OF	TABLES	7
REFERE	NCES	9
CHAPTI	<i>ER-1: Cryptographic Systems</i> 11	3
1.1.	Introduction to Cryptographic systems13	3
1.2.	Classification of cryptographic algorithms10	6
1.2.1.	Traditional cryptography10	6
1.2.2.	Modern Cryptography10	6
1.2.3.	Types of configuration of cryptographic system	8
1.3.	Elements or Subsystems and Applications of a cryptographic systems2	1
1.3.1	Encryptor22	2
1.3.2	Decryptor22	2
1.3.3	Hash Functions	2
1.3.4	Hashed Message Authentication Code (HMAC)23	3
1.3.5	Random Number Generator23	3
1.3.6	Digital Signatures	4
1.3.7	Key Management24	4
1.3.8	Key Management Interoperability Protocol (KMIP)24	4
1.3.9	Cryptography Interfaces and APIs24	4
1.3.10	QKD Key delivery interface	6

1.3.11	Encryption Protocols	27
1.3.12	Public and Private key pairs	27
1.3.13	Key Encapsulation Mechanisms (KEM)	27
1.3.14	Post-quantum or Quantum-safe Algorithms	28
1.3.15	Hash based cryptosystems	29
1.3.16	Hybdrid X.509 certificates	29
1.3.17	Internet Key Exchange version 2 (IKEv2)	30
1.3.18	Transport Layer Security (TLS)	30
1.3.19	Secure/Multipurpose Internet Mail Extention (S/MIME)	31
1.3.20	Secure Shell (SSH)	31
1.3.21	Endpoint devices	32
1.3.22	Lightweight Cryptography	33
1.3.23	Network infrastructure encryption	34
1.3.24	Quantum Computing	34
1.3.25	Cloud Storage and Computing	35
1.3.26	Cryptography-as-a-Service	35
1.3.27	Cryptography Service Provider (CSP)	36
1.3.28	Security Services	37
1.4.	Functional requirements of a cryptographic system	38
1.5.	Operational requirements of a cryptographic system	44
1.6.	Interface requirements of a cryptographic system	47
1.7.	Interoperable requirements of a cryptographic system	50
1.8.	Quality requirements of a cryptographic system	51
1.9.	EMI/EMC Requirements of a cryptographic system	52
1.10.	Safety Requirements of a cryptographic system	57

1.10.1	Electrical safety
1.10.2	Laser safety
1.11.	Security services requirements of a cryptographic system
1.11.1	Security service level classification
1.12.	Information for the procurer of the product for maintenance and
operatio	on64
CHAPT	<i>ER-2: Specifications and Certification</i> 68
2.1	Specification requirements of the configuration of the product for Testing,
Validati	on and Certification
2.1.1	Specification requirements of a Classical (pre-quantum era) cryptographic
systems	
2.1.2	Specifications requirements of a Quantum-safe cryptographic systems71
2.2	TEC Certification75
2.2.1	Classification of Voluntary Certificates75
2.2.2	Specific remarks to be mentioned in the Certificate76
2.2.3	Mandatory Certification76
	IONS AND TERMINOLOGY77

TABLE OF FIGURES

Figure 1: Block Diagram of a typical Cryptographic System	13
Figure 2: Block Diagram of classification of classical cryptography	
Figure 3: Block Diagram of a Symmetric cryptographic system	21
Figure 4: Block Diagram of Asymmetric cryptographic system	
Figure 5: Block Diagram of Hash functions	23
Figure 6: Block Diagram of communication flow of Key delivery management	
Figure 7: Block Diagram of Lightweight cryptography design trade-offs	
Figure 8: Block Diagram - Cryptography-as-a-Service	

LIST OF TABLES

Table 1: Impact of Quantum Computing on common cryptographic algorithms	14
Table 2: Functional requirements of a cryptographic system	39
Table 3: Operational requirements of a cryptographic system	44
Table 4: Interface requirements of a cryptographic system	<i>48</i>
Table 5: Interoperable requirements of a cryptographic system	50
Table 6: Quality requirements of a cryptographic system	<i>52</i>
Table 7: EMI/EMC requirements of a cryptographic system	56
Table 8: Safety requirements of a cryptographic system	57
Table 9: Security services requirements of a cryptographic system	61
Table 10: Specification requirements of a Classical cryptographic systems	68
Table 11: Specification requirements of Quantum-safe cryptographic systems	71

HISTORY SHEET

S.No. GR No.		Title	Remarks
1.	TEC 91010 : 2023	Generic Requirements of Quantum-safe and Classical Cryptographic Systems	First issue

REFERENCES

The following referenced documents are necessary for the application of the present document.

Sr.	Document No.	Title/Document Name				
No.						
1.	CISPR 32/ or IS/CISPR	Limits and methods of measurement of radio				
	32: 2015	disturbance characteristics of Information Technology				
		Equipment				
2.	ETSI TR 103 619 V1.1.1	Migration strategies and recommendations				
	<u>(2020-07)</u>	to Quantum-safe schemes				
3.	ETSI GS QKD 014 V1.1.1	Quantum Key Distribution (QKD);				
	<u>(2019-02)</u>	Protocol and data format of REST-based key delivery				
		API				
4.	FIPS 140-3	Security Requirements for Cryptographic Modules				
5.	FIPS PUB 197	Advanced Encryption Standard (AES) 2001				
6.	FIPS PUB 198	The Keyed-Hash Message Authentication Code				
		(HMAC) 2002				
7.	IEC 60825-2/ IS 14624-	Safety of laser products Part 2 safety of optical fibre				
	2	communication systems OFCS (First Revision)				
8.	<u>IEC 61000-4-11/</u> IS	Testing & measurement technique- voltage dips,				
	14700 (Part 4/Sec 11) :	short interruptions, and voltage variations immunity				
	2020	tests.				
9.	<u>IEC 61000-4-2 / I</u> S	Testing and measurement techniques of Electrostatic				
	14700 (Part 4/Sec 2) :	discharge immunity test				
	2018					
10.	IEC 61000-4-29	Testing and measurement techniques- Voltage dips,				
		short interruptions, and voltage variations on D.C				
		input power port immunity test.				

11.	IEC 61000-4-3/. IS	Radiated RF electromagnetic field immunity test			
	14700 (Part 4/Sec 3) :				
	2010				
12.	IEC 61000-4-4/ IS	Testing and measurement techniques of electrical fast			
	14700 (Part 4/Sec 4) :	transients/burst immunity test			
	2018				
13.	IEC 61000-4-5(2017)/ IS	Testing & Measurement techniques for surge			
	14700 (Part 4/Sec 5) :	immunity test.			
	2019				
14.	<u>IEC 61000-4-6 /</u> IS	Testing & Measurement techniques for surge			
	14700 (Part 4/Sec 6) :	immunity test and Immunity to conducted			
	2016	disturbances			
15.	IEEE 802.1AE	Media Access Control (MAC) Security			
16.	IEEESTD.2018.8585421	IEEE Standard for Local and metropolitan area			
		networks–Media Access Control (MAC) Security. IEEE.			
		December 2018.			
17.	IEC 60215/ IS	Safety requirements for radio transmitting equipment			
	10437(1986)				
18.	IEC 60950-1(2005)/ IS	Safety of information technology equipment			
	13252 (2010)				
19.	ISO/IEC 10116:2006 / IS	Information technology – Security techniques –			
	15116 : 2018	Modes of operation for an n-bit block cipher			
20.	ISO/IEC 18033-3:2010/	Information Technology Security Techniques			
		Encryption algorithms			
21.	ISO/IEC 19790:2012	Information technology — Security techniques —			
		Security requirements for cryptographic modules			
22.	ISO/IEC 24759:2017	Information technology - Security techniques - Test			
		requirements for cryptographic modules			
23.	<u>ITU-T X.1710</u>	Security framework for quantum key distribution			
		networks Series X: Data Networks, Open System			
		Communications And Security			
24.	ITU-T X.1811	Security guidelines for applying quantum-safe			
		algorithms in IMT-2020 systems			

25.	<u>ITU-T X.800</u>	Security architecture for Open Systems				
		Interconnection for CCITT applications				
26.		Quantum key distribution networks - Functional				
	<u>110-1 Y.3802</u>	architecture				
27.		Quantum key distribution networks - Key				
	<u>110-1 1.3803</u>	management				
28.		Quantum key distribution networks - Control and				
	<u>110-1 1.3804</u>	management				
29.	NISTIR 8105	Report on Post-Quantum Cryptography				
30.	<u>QM-333</u>	Specification for environmental testing of electronic				
		equipment for transmission and switching use				
31.	RFC 3602	The AES-CBC Cipher Algorithm and Its Use with IPsec				
32.		Using Advanced Encryption Standard (AES) Counter				
	<u>KFC 3080</u>	Mode with IPsec Encapsulating Security Payload (ESP)				
33.	DEC 4106	The Use of Galois/Counter Mode (GCM) in IPsec				
	<u>KFC 4100</u>	Encapsulating				
34.	<u>RFC 4301</u>	Security Architecture for the Internet Protocol				
35.	<u>RFC 4302</u>	IP Authentication Header				
36.	<u>RFC 4303</u>	IP Encapsulating Security Payload				
37.	DEC 4207	Cryptographic Algorithms for Use in the Internet Key				
	<u>KFC 4507</u>	Exchange Version 2 (IKEv2)				
38.	<u>RFC 4308</u>	Cryptographic Suites for IPsec				
39.		Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-				
	<u>KFC 4000</u>	SHA-512 with IPsec				
40.		Using Authenticated Encryption Algorithms with the				
	RFC 5282	Encrypted Payload of the Internet Key Exchange				
		Protocol Version 2 (IKEv2)				
41.	RFC 7296	Internet Key Exchange Protocol Version 2 (IKEv2)				
41. 42.	<u>RFC 7296</u>	Internet Key Exchange Protocol Version 2 (IKEv2)CryptographicAlgorithmImplementation				
41. 42.	RFC 7296	Internet Key Exchange Protocol Version 2 (IKEv2)CryptographicAlgorithmRequirements and Usage Guidance for Encapsulating				
41. 42.	<u>RFC 7296</u> <u>RFC 7321</u>	Internet Key Exchange Protocol Version 2 (IKEv2)CryptographicAlgorithmImplementationRequirements and Usage Guidance for EncapsulatingSecurityPayload (ESP) and Authentication				

43.	TEC/SD/DD/EMC-	Electromagnetic	Compatibility	Standard	for
	221/05/OCT-16	Telecommunicatior	n Equipment		

Note: Unless otherwise explicitly stated, the latest approved issue of the standards/documents referred to above, with all amendments in force, on the issuance date of this GR shall be applicable.

CHAPTER-1

Cryptographic Systems

1.1. Introduction to Cryptographic systems

Cryptography is the practice of securing communication and protecting data from unauthorized access by converting plaintext into ciphertext using mathematical algorithms, making it unintelligible to anyone without the proper key. It plays a critical role in securing our digital infrastructure.

The typical cryptographic system is shown in Figure 1. The original message is usually termed as plaintext and the scrambled mesage is called the ciphertext. The encryption algorithm converts the plaintext to the ciphertext and the decryption algorithm performs a reverse process to get back the original message.

Figure 1: Block Diagram of a typical Cryptographic System

Our most crucial communication protocols rely on three core cryptographic primitives: public key encryption, digital signatures and key exchange. These primitives are implemented using state-of-the-art of cryptographic algorithms, e.g., AES, Diffie-Hellman Key Exchange(DHKE), the RSA (Rivest-Shamir-Adleman) algorithm, and elliptic curve cryptography(ECC).

Quantum-safe cryptographic systems, also known as post-quantum cryptography, are designed to be resistant to attacks from both classical and quantum computers. These systems use algorithms that are believed to be

secure even against quantum computers. Quantum-safe cryptography is becoming increasingly important as quantum computers continue to evolve and become more powerful.

Quantum-safe and classical cryptographic systems are both used to secure communication and protect sensitive data from unauthorized access. Classical cryptographic systems use mathematical algorithms that are currently secure against attacks from classical computers. However, with the emergence of quantum computers, classical cryptographic systems are at risk of being broken, as quantum computers have the potential to solve certain mathematical problems much faster than classical computers.

SI.	Cryptographic	Туре	Purpose	Impact of the	
No.	Algorithms			large scale	
				quantum	
				computer	
1	AES	Symmetric	Encryption	Larger key sizes	
		Кеу		needed	
2	SHA-2, SHA-3		Hash functions	Larger output	
				needed	
3	RSA	Public key	Signatures, key	No longer	
			establishment	secure	
4	ecdsa, ecdh	Public key	Signatures, key	No longer	
			exchange	secure	

	Table 1:	Impact of	Quantum	Computing	on common	cryptographic	algorithms
--	----------	-----------	---------	-----------	-----------	---------------	------------

Classical and quantum-safe cryptographic systems provide confidentiality, integrity, authentication, and non-repudiation to ensure secure communication and protect sensitive data.

The security of the public key cryptographic primitives depends on the difficulty of a number of theoretical problems, such as integer Factorisation and the Discrete Log Problem. In 1994, Peter Shor showed that quantum computers, a new technology leveraging the physical properties of matter and energy to perform calculations, can efficiently solve factorisation and discrete log problems, thereby rendering all public key cryptosystems based on such assumptions insecure. Thus, a sufficiently powerful quantum computer will peril many forms of modern communication, from Key exchange to encryption to digital authentication. As a result, RSA and DHKE are no longer secure in a post-quantum era.

Today's most important uses of public key cryptography are for digital signatures and Key establishment. Grover's algorithm provides a quadratic speed-up for quantum search algorithms compared to search algorithms on classical computers. We don't know that Grover's algorithm will ever be practically relevant, but if it is, doubling the Key size will be sufficient to preserve security in a symmetric cryptographic system. Furthermore, it has been shown that an exponential speed-up for search algorithms is impossible, suggesting that symmetric algorithms and hash functions should be usable in a quantum Consequently, the search algorithms believed to resist attacks from era. classical and guantum computers have focused on public key algorithms. Thus, Quantum-safe (post-quantum) cryptography is needed. In the last two decades, cryptographers have proposed a few families of computationally hard problems for Quantum-safe cryptography in Mathematics, which are also believed to be hard for quantum computers. These families come from lattice theory, coding theory, multivariate polynomials, isogeny and a handful of others (not yet confirmed quantum computer resistant).

It is critical to begin planning for the replacement of hardware, software, and services that can interoperate with existing communications protocols and networks. Consequently, the search algorithms believed to resist attacks from classical and quantum computers have focused on public key algorithms. Most quantum-resistant algorithms have larger Key sizes than the ones they will substitute, which is a big challenge. Quantum-safe algorithms may change various Internet protocols, such as the Transport Layer Security (TLS) protocol or the Internet Key Exchange (IKE). Implementing quantum-safe algorithms requires identifying hardware and software modules, operating systems, communication protocols, cryptographic libraries, and applications employed in data centres on-premises or in the cloud and distributed computing, storage, and network infrastructures.

1.2. Classification of cryptographic algorithms

Cryptographic algorithms are broadly classified into two categories, i.e., traditional and modern, based on the type used during the encryption and decryption process (refer to figure 2).

1.2.1. Traditional cryptography

Traditional cryptography refers to cryptographic methods and techniques developed before the advent of computers. Examples of traditional cryptography techniques include:

- Substitution ciphers (Caesar ciphers, etc.).
- Transposition ciphers (Rail Fence cipher, etc.).
- Polyalphabetic ciphers (such as the Vigenère cipher).

These techniques relied on the secrecy of the encryption key and sometimes also on the algorithm to secure communication.

1.2.2. Modern Cryptography

Modern cryptography is based on publicly known mathematical algorithms that operate on binary bit sequences and utilise secret keys. There are three types of modern cryptography:

- i Symmetric (Secret Key)cryptography
- ii Asymmetric (Public Key) cryptography
- iii Cryptographic Hash Functions

Figure 2: Block Diagram of classification of classical cryptography

1.2.2.1 Symmetric key cryptography

Encryption and decryption keys are identical in this scheme and should be known only to the communicating parties. Symmetric key cryptography is much faster than Asymmetric key cryptography, is far less resource-intensive than asymmetric encryption and is an incredibly efficient way to protect large volumes of data. Examples are Advanced Triple-Data Encryption Standard (DES), i.e., 3DES, Advanced Encryption System (AES), etc.

1.2.2.2 Asymmetric key cryptography

In this scheme, two keys are used, i.e., public key (for encryption) and private key (for decryption). The private key is kept secret as it is used for decryption, while the public key is not. For a secure public key cryptosystem, it is impossible to determine the private key's value by knowing the corresponding public key.

Most public communication networks use a combination of asymmetric and symmetric key cryptography schemes. An asymmetric/ Public Key

Cryptography scheme is used for key distribution. At the same time, the data flow is secured using a symmetric technique because of its better performance in the encryption/decryption process.

1.2.2.3 Hash Function

A Hash function is a cryptographic algorithm that takes an input message of any size and outputs a short fingerprint of fixed length. Typically, it does not require any key along with the input message, and the output is usually called hash-value or hash-digest. These algorithms are typically used to ensure the authenticity or integrity of data. Hash functions can also use keys, referred to as Keyed-hash functions, under such usage. Many operating systems/applications store passwords using hash functions.

1.2.3. Types of configuration of cryptographic system

A cryptographic module shall be a set of hardware, software, firmware or some combination thereof that at a minimum, implements a defined cryptographic service employing an approved cryptographic algorithm, security function or process and contained within a defined cryptographic boundary. The cryptographic systems can be classified based on the hardware, software and or firmware used in modular form within the cryptographic boundary. These modules may be part of any interdependent or standalone system.

The cryptographic module/system can be defined as one of the following types:

- i. Hardware module: It is a module whose cryptographic boundary is specified at a hardware perimeter. Firmware and/or software, which may also include an operating system, may be included within the hardware cryptographic boundary.
- ii. Software module: It is a module whose cryptographic boundary delimits the exclusive software component(s) (may be one or multiple software components) that execute(s) in an adjustable operational environment. The computing platform and operating system of the working environment in which the software performs are external to the defined software module boundary.

- iii. Firmware module: It is a module whose cryptographic boundary delimits the exclusive firmware component(s) that execute(s) in a limited or nonmodifiable operational environment. The computing platform and operating system of the operational environment in which the firmware executes in are external to the defined firmware module boundary but explicitly bound to the firmware module.
- iv. Hybrid Software module: It is a module whose cryptographic boundary delimits the composite of a software component and a disjoint hardware component (i.e. the software component is not contained within the hardware module boundary). The computing platform and operating system of the operational environment in which the software executes are external to the defined hybrid software module boundary.
- v. Hybrid Firmware module: It is a module whose cryptographic boundary delimits the composite of a firmware component and a disjoint hardware component (i.e. the firmware component is not contained within the hardware module boundary). The computing platform and operating system of the operational environment in which the firmware executes in are external to the defined hybrid firmware module boundary but explicitly bound to the hybrid firmware module.

1.2.3.1 Classification of Quantum-safe cryptography configuration

The Quantum-safe cryptography module can be classified in a similar manner to classical cryptography modules. However, the algorithms will be different, especially for public key infrastructure like public key encryption schemes, key exchange mechanisms, digital signature schemes and hash functions. These algorithms need to resist attacks by quantum computers, and at the same time, they should still be secure against classical computer attacks.

For symmetric key cryptography, doubling the key size can provide some protection against quantum computing attacks, but this is not a complete solution. New search algorithms are being developed for asymmetric key cryptography to resist quantum computing attacks. NIST has been developing Quantum-safe cryptographic standards in four phases, and the final set of standards is expected to be released in 2024.

1.2.3.2 Quantum-safe symmetric cryptography

Symmetric key cryptography is vulnerable to quantum attacks. It is mostrly threatened by Grover's algorithm. Unlike the asymmetric encryption alogorithms (eg. RSA, etc) which could be completely breaken by the Quantum computer; for symmetric algorithms like AES, the best known Gorver's algorithm for attacking these encryption algorithms only weakens them. Grover's algorithm decreases the effective key length of a symmetric encryption algorithm by half, so AES-128 has an effective key space of 2^64 and AES-256 has an effective key space of 2^128. However, increasing the cipher's key length can address an attack from the Quantum computer

1.2.3.3 Quantum-safe asymmetric cryptography

Today's most important uses of public key cryptography are for digital signatures and key establishment. Constructing a large-scale quantum computer would render many of these public key cryptosystems insecure. In particular, this includes those based on the difficulty of integer factorisation, such as RSA and those based on the hardness of the discrete logarithm problems. Quantum-safe Cryptography mainly refers to developing new asymmetric cryptography techniques that use a different class of hard mathematical problems. There are a few popular Quantum-safe cryptographic approaches that have emerged, such as Lattice-based, Code-based, multivariate-based and hash based cryptography. These mathematically hard problems are believed to be secure against classical as well as quantum computers.

1.2.3.4 Quantum-safe Hash functions

Hash-based cryptography offers one-time signature schemes based on hash functions such as Lamport-Diffie or Winternitz signature. Since Winternitz and Lamport-Diffie signatures can use securely once, they combine with structures like binary trees. Instead of using a signing key for a single, one-time use signature, a key may use for several signatures limited and bounded by the size of the binary tree.

SHA512 is sufficient to meet the requirements of any of our five security strength categories and performs well in software, especially for 64-bit architectures. TupleHash256 (specified in SP 800-185.), etc., is under consideration in NIST.

Extended Merkle signature scheme (XMSS) is a stateful signature scheme, and stateful hash based signature methods need extra care to implement safely. XMSS is a more current scheme that NIST includes in the standardisation process. It builds on Merkle Trees.

1.3. Elements or Subsystems and Applications of a cryptographic systems

A cryptographic system relies upon two basic components, i.e., an algorithm (or cryptographic methodology) and a cryptography key. Cryptographic subsystems in classical cryptography are the same as in Quantum-safe cryptographic systems except that different algorithms are implemented on hardware (Key sharing methods are different in Quantum Key Distribution (QKD) and Quantum-safe Cryptography). It also consists of software/firmware modules, operating systems, communication protocols, cryptography libraries, and applications deployed in data centres on-premises or in cloud, distributed computing, storage and network infrastructure.

Figure 3: Block Diagram of a Symmetric cryptographic system

Figure 4: Block Diagram of Asymmetric cryptographic system

Note: Encryption algorithms are the same, but in symmetric cryptographic systems, the key is transported through quantum modules over the QKD channel, whereas in the case of Asymmetric cryptography systems, the key is shared using Quantum-safe Cryptography key sharing algorithms. QKD is one of the key sources, as shown in Figure 3.

1.3.1 Encryptor

Communicates Data over an unsecured network by changing it from plain text to cipher text using an encryption algorithm driven by Key.

1.3.2 Decryptor

The receiver, who holds the same key and decryption algorithm, turns the cipher text into plain text. In this way, data transmit securely over an unsecured communication channel.

1.3.3 Hash Functions

Hashing is a method used to verify data integrity (already referred to in para 1.2.2.3). This technique is referred to as collision resistance, refer to figure 5.

Figure 5: Block Diagram of Hash functions

- i) A Message Digest 5 algorithm [MD5]: This creates a 128-bit digest used in the hash function. (Not recommended for use).
- ii) Secure Hash Algorithm 1 (SHA-1): This creates a 160-bit digest (Not recommended for use).
- iii) Secure Hash Algorithm 2 (SHA-2): Options include a digest between 224 and 512 bits.
- iv) Secure Hash Algorithm 3 (SHA-3): Options include a digest between 224 and 512 bits.
- v) SPHINCS+: For Quantum safe cryptography hash functions

1.3.4 Hashed Message Authentication Code (HMAC)

It uses the hashing mechanism but kicks it up a notch. Instead of using a hash that anyone can calculate, it includes a secret key. Currently, there are three approved general purpose MAC algorithms: HMAC, KMAC and CMAC.

1.3.5 Random Number Generator

In cryptography, randomness is found everywhere, from the generation of keys to encryption systems, even how cryptosystems are attacked. Without randomness, all crypto operations would be predictable and hence, insecure. A good random number generator consists of two parts: a source of entropy and a cryptographic algorithm. Cryptographic algorithms require Keys. A Random Number Generator (RNG), also called a Random Bit Generator (RBG), is needed in the key generation process to create a random (strong) key as well as for other cryptographic purposes such as initialisation vectors and nonces. Typically, a True Random Number Generator (TRNG) provides a source of randomness or "entropy" to seed a Pseudo-Random Number Generation (PRNG), also called a Deterministic Random Bit Generator (DRBG).

1.3.6 **Digital Signatures**

Offers Authentication, Data Integrity, and Non-repudiation. Digital signatures involve public and private key pairs, hashing, and encryption.

1.3.7 Key Management

Deals with generating keys, verifying keys, exchanging keys, storing keys, and at the end of their lifetime, destroying keys. The bigger the key, the more secure the algorithm will be. The only negative of having an extremely long key is that the longer the key, the more the CPU is used to decrypt and encrypt data.

1.3.8 Key Management Interoperability Protocol (KMIP)

Deals with generating keys, KMIP protocol allows communication between key management systems and cryptographically enabled applications, such as email, databases, and storage devices. KMIP is an extensible communication protocol for manipulating cryptographic keys on a key management server that defines message formats. Clients can also ask a server to encrypt or decrypt data without directly accessing the key using KMIP. The key management interoperability standard can support legacy systems and quantum-safe cryptographic applications.

1.3.9 Cryptography Interfaces and APIs

i. **Cryptography API:** Next Generation (CNG) is the long-term replacement for CryptoAPI. CNG is designed to be extensible at many levels and cryptography agnostic in behaviour. CNG is intended for use by developers of applications that will enable users to create and exchange documents and other data in a secure environment, especially over nonsecure media such as the Internet. At the CNG level, it was necessary to provide substitution and discoverability for all the algorithm types (symmetric, asymmetric, hash functions), random number generation, and other utility functions. The protocol-level changes are more significant because, in many cases, the protocol APIs needed to add algorithm selection and other flexibility options that did not previously exist.

- ii. Web Cryptography API: This specification describes a JavaScript API for performing basic cryptographic operations in web applications, such as hashing, signature generation and verification, and encryption and decryption. Additionally, it describes an API for applications to generate and/or manage the keying material necessary to perform these operations. Uses for this API range from user or service authentication, document or code signing, and communications' confidentiality and integrity.
- iii. PKCS #11: This refers to the programming interface to create and manipulate cryptographic tokens (a token where the secret is a cryptographic key). The API defines the most commonly used cryptographic object types (RSA keys, X.509 certificates, DES/Triple DES keys, etc.) and all the functions needed to use, create/generate, modify and delete those objects. Most commercial certificate authority (CA) software uses PKCS #11 to access the CA signing key or to enrol user certificates.
- iv. Java Cryptography Extension (JCE): The Java Cryptography Extension (JCE) is an officially released Standard Extension to the Java Platform and part of Java Cryptography Architecture (JCA). JCE provides a framework and implementation for encryption, key generation/management and Message Authentication Code (MAC) algorithms. JCE supplements the Java platform, which already includes interfaces and implementations of message digests and digital signatures.

1.3.10 **QKD Key delivery interface**

The communication protocol is an Application Program Interface (API) that allows authentication and communication between the Cryptographic system Secure Application Entity (SAE) and the Quantum Key Distribution bv Entity(QKDE) by Key Management Entity (KME). REST-based APIs are predominantly used due to their simplicity and ease for developers to understand. They are common in many applications; libraries, implementations, and guidance documents are available to the community. Each KME shall have one or multiple QKDEs to connect with other KMEs via QKD links. KMEs shall be able to distribute keys to other KMEs. In each Trusted Node, there shall be at least one KME. One or multiple SAEs may connect with a KME within a Trusted Node, as mentioned in figure 6. It is assumed that each Trusted node is securely operated and managed. Each trusted node shall be located on its site. SAEs shall be located with their connected KMEs on their site. The API between SAE and KME shall be used within a security boundary on each site. KMEs shall provide Web API server functionality to deliver keys to SAEs via HTTPS protocols. Each KME shall have a unique ID (KME ID). A KME ID shall be unique in a QKD network. SAEs make HTTPS requests to KMEs to get keys and status information. Each SAE shall have a unique ID (SAE ID). SAE ID shall be unique in a QKD network.

All communications between SAE and KME shall use the HTTPS protocols (with TLS version 1.3 or higher) (IETF RFC 7230, IETF RFC 7231, IETF RFC 7235, IETF RFC 5246, IETF RFC 8446). KMEs shall authenticate each request and identify the unique SAE ID of the calling SAE. Data in the message body of HTTPS requests from SAE to KME and HTTPS responses from KME to SAE shall be encoded in JSON format as per IETF RFC 8259. This key delivery API is a REST-based API, a simple request and response style API between a SAE and a KME. Figure 6 shows how the key delivery API can be used for Multiple SAEs connected to a single KME. KME A and KME B exchange and store keys; each key delivered is assigned a universally unique ID.

Figure 6: Block Diagram of communication flow of Key delivery management

1.3.11Encryption Protocols

Encryption is done through encryption algorithms. These algorithms do all the cryptographic operations, using the encryption key, on the plaintext data. These algorithms are then utilised within encryption protocols to protect data for different purposes. The point of an encryption protocol is to fulfil a specific function. The functions of encryption protocols can vary, from communications with TSL to remote connections to computers with SSH.

1.3.12 Public and Private key pairs

A key pair is a set of two keys that work together as a team. In a typical key pair, you have one public and one private key.

1.3.13 Key Encapsulation Mechanisms (KEM)

In cryptographic protocols, a Key Encapsulation Mechanism (KEM) is used to secure symmetric key material for transmission using asymmetric (public key) algorithms. KEM makes this possible through a collection of three algorithms:

- i. A key generation algorithm, Generate, generates a public key and a private key (a key pair).
- ii. An encapsulation algorithm, Encapsulate, takes as input a public key and outputs a shared secret value and an "encapsulation" (a ciphertext) of this secret value.
- iii. A decapsulation algorithm, Decapsulate, takes as input the encapsulation and the private key and outputs the shared secret value.

1.3.14 Post-quantum or Quantum-safe Algorithms

- i. Code-based cryptosystems: The notion of code-based cryptography was first introduced by an encryption scheme published by McEliece in 1978. The McEliece cryptosystem builds on (binary) Goppa codes and their security based on the syndrome decoding problem. It is known to be extremely fast in encryption and reasonably quick in decryption.
- ii. Lattice-based cryptosystems: Shortest Vector Problem (SVP) is to find the shortest non-zero vector within the lattice. SVP is known to be an NP-hard problem. The running time of solving a specific SVP instance remains to be discovered, i.e., it is still hard to estimate the exact computation of attacking a lattice-based cryptosystem. The security of the schemes is based on a lattice problem which is NP-hard under randomised reduction. And unlike the factorisation problem nor the discrete log problem, there is no known quantum-safe algorithm to solve SVP with the help of a quantum computer. Among all the candidates, the two algorithms are Learning With Error (LWE) based algorithms such as CRYSTALS-KYBER and CRYSTALS-Dilithium. LWE is a mathematical problem widely used in lattice-based cryptography to create secure encryption algorithms to deliver the best performance and security. In practice, the Ring Learning With Error (R-LWE) variant is usually used to boost the efficiency of LWE-based systems. The security of the R-LWE problem reduces to the same lattice problem as SVP.
- iii. **Multivariate cryptosystems**: The simplest Matrix (or ABC) encryption is currently the most promising multivariate encryption scheme. Multivariate

TEC 91010:2023

cryptosystems are public key based systems used for digital signatures. The most promising signature schemes include Unbalanced Oil and Vinegar (UOV) and Rainbow. There also exist BigField methods such as Hidden Field Equations (HFE) and pFLASH.

iv. Lattice-based signature Scheme: Lattice-based algorithms are faster and are considered quantum-safe. The security of lattice-based signature schemes is based on a short integer solution(SIS) problem. TLS has two protocols, handshake and record. The first protocol establishes the shared secret keying material and takes place with NewHope. Then, certificate-based mutual authentication is performed with CRYSTALS-Dilithium.

1.3.15 Hash based cryptosystems

Hash-based cryptography offers a one-time signature based on hash functions such as Lamport-Diffie or Winternitz signatures. The security of such one-time signature schemes relies solely on the collision resistance of the chosen cryptographic hash function.

1.3.16 Hybdrid X.509 certificates

X.509 defines public key certificates used to authenticate entities via signatures from publicly trusted authorities. These certificates are used in IETF's Public Key Infrastructure (PKI) X.509 (PKIX) standards and are widely deployed online for authentication. This describes a method of embedding alternative sets of cryptographic materials into X.509v3 digital certificates, X.509v2 Certificate Revocation Lists (CRLs), and PKCS #10 Certificate Signing Requests (CSRs). The embedded alternative cryptographic materials allow a Public Key Infrastructure (PKI) to use multiple cryptographic algorithms in a single object and transition to the new cryptographic algorithms while maintaining backward compatibility with systems using the existing algorithms. Thus, to use new Quantum-safe signatures in X.509, changes would be required in the X.509 algorithms. To authenticate the service channel required by a QKD system during the key distillation phase of the QKD protocol.

1.3.17 Internet Key Exchange version 2 (IKEv2)

Internet Key Exchange (IKEv2) is a protocol used to establish keys and Security Associations (SAs) to set up a secure Virtual Private Network (VPN) connection that protects network packets from being read or intercepted over a public Internet connection. The IKE protocol standard is rigid and does not permit VPN designers to choose beyond a small set of cryptographic algorithms. At present, the allowed algorithms are only partially quantum-safe. IKE provides authenticated connections using RSA, DSS or MAC with a pre-shared secret. IKE security associations are built on Perfect Forward Secrecy (PFS); in conventional security terms, ephemeral, one-time-use keys are created for every new secure connection. This ensures that the compromise of a long-term key only affects the confidentially of sessions established before the compromise. A replacement algorithm for the first and third exchanges, for instance, a quantum-safe alternative to replace the Diffie-Hellman key agreement to establish the shared secret for an IKE SA with perfect forward security. Together with a quantum-resistant authentication algorithm, this would enable IKE to negotiate quantum-safe symmetric keys. QKDs or any quantum sourced/TRNG shared secrets may be used with conventional encryption ciphers or for onetime pad encryption in high-security applications. QKD or any quantum sourced/TRNG may also be used for the second pass to solve the key management problem of distributing shared secret keys for message authentication.

1.3.18 Transport Layer Security (TLS)

TLS is used to secure a variety of applications, including web traffic (the HTTP protocol), file transfer (FTP application) and mail transport (SMTP application). The design of TLS is mainly independent of cryptographic algorithms and allows parties to negotiate cipher suites (combinations of cryptographic algorithms to use). As of TLSv1.3, all cryptographic components (public key authentication, key exchange, hash functions, bulk encryption) can be negotiated, although generally, all must be arranged simultaneously in a single cipher suite rather than independently. Currently, most servers are authenticated using X.509

certificates containing RSA public keys and thus can not be considered quantum safe.

A quantum-safe key exchange mechanism with perfect forward secrecy replaces existing key exchange mechanisms. To ease adoption, non-quantum-safe digital signatures, such as RSA, can continue to provide authentication. Quantum-safe cipher suites should match the security estimates of their symmetric primitives to the security estimates of their public key primitives. For example, a cipher suite utilising a quantum-safe public key algorithm at the 128-bit security level should use symmetric primitives at the 256-bit level to account for the impact of quantum search attacks.

Quantum-safe digital signatures are deployed in certificates to authenticate the purely quantum-safe key exchange mechanism introduced in stage 1 above. A suitable mechanism for incorporating key material established from a quantum key distribution channel into TLS would allow parties to achieve high computational security from a relatively short QKD key.

1.3.19 Secure/Multipurpose Internet Mail Extention (S/MIME)

It is a standard for digital signatures and public key encryption to send email messages securely. It offers origin authentication, non-repudiation, data integrity, and confidentiality through digital signatures and message encryption. This Standard is widely adopted throughout government and enterprise. S/MIME, and a similar scheme called OpenPGP, allow email to remain encrypted during the entire path from the sender to the receiver. The most potent alternative to S/MIME for preserving end-to-end security is OpenPGP. Content encryption in S/MIME relies upon symmetric ciphers like AES that are believed to be quantum-safe. The above mentioned key establishment algorithms for these symmetric keys and the algorithms used for digital signatures are insecure in a Quantum-safe environment.

1.3.20 Secure Shell (SSH)

It is a secure remote-login protocol. It has pervasive and diverse applications and can be used for various purposes, including constructing cost-effective secure Wide Local Area Networks (WLAN), secure connectivity for cloud-based services, and essentially any other enterprise process requiring secure server access from a remote client. The SSH protocol involves three major subprotocols: the Transport Layer Protocol, the User Authentication Protocol, and the Connection Protocol. Each uses its algorithms to perform specific functions at different network layers. Within this protocol, several parameters are negotiated between server and client, including symmetric encryption algorithms, message authentication algorithms, and hash algorithms – all of which are quantum-safe. However, much like S/MIME, Key exchange and public key authentication methods rely upon insecure algorithms in the presence of quantum advantage. The following recommendations are suggested at the level of the Transport Layer Protocol:

- i) Use of the Diffie-Hellman (DH) key exchange must be replaced by a quantum-safe algorithm that offers fast key-pair generation and perfect forward secrecy.
- ii) The use of the Digital Signature Algorithm (DSA), the Elliptic Curve Digital Signature Algorithm (ECDSA) and the RSA Signature Scheme Algorithm (RSA-SSA) for host authentication must be replaced by the use of quantumsafe authentication mechanisms such as quantum-safe digital signatures or message authentication codes based on a pre-shared symmetric key.
- iii) Quantum Key Distribution is one of the viable methods for secret key generation within the SSH protocol. Using QKD would bypass issues related to the presently unsafe practices of private key exchange and could replace the current key-establishment methods for symmetric (AES) keys.

1.3.21 Endpoint devices

Endpoint devices include any piece of hardware that a user utilises to interact with a distributed computing system or network. These can include canonical examples such as personal computers and mobile phones, kiosks/terminals in banks, stores, and airports, and any embedded technology connected to a broader network. Encryption and authentication of endpoint devices refer to making the contents of the device unreadable to unauthorised parties through cryptography and security protocols. This mechanism is a critical practice to prevent unauthorised data transfer and access, to ensure that only approved

TEC 91010:2023

devices are allowed access to the system, and to deal appropriately with rogue or compromised devices that threaten system security through intrusions such as malware, key loggers, or viruses.

1.3.22 Lightweight Cryptography

Storage servers and data must be secure throughout their entire transfer through a network from one location. The security of resource-constrained devices is critical in the IoT field, given that everything is interconnected. The concern is that the limited resources on these devices may cause performance issues when the standard cryptographic algorithms are running on them. Therefore, in recent years, researchers have been working on developing lightweight cryptography and various efficient cryptographic technologies. Its requirements are constrained by security, low cost and high performance.

These requirements are balanced accordingly by adjusting the key size, the number of encryption rounds and the system architecture. Thus, the target of lightweight cryptography is to find a better balance between performance and security within cost constraints (refer Figure 7). The chosen algorithms are designed to protect information created and transmitted by the Internet of Things (IoT), including its myriad of tiny sensors and actuators. They are also

designed for other miniature technologies, such as implanted medical devices, stress detectors inside roads and bridges, and keyless entry fobs for vehicles.

Devices like these need "lightweight cryptography" protection that uses the limited amount of electronic resources they possess.

The most important in lightweight cryptography: authenticated encryption with associated data (AEAD) and hashing.

AEAD protects the confidentiality of a message, but it also allows extra information, such as the header of a message, or a device's IP address, to be included without being encrypted. The algorithm ensures that all of the protected data is authentic and has not changed in transit. AEAD can be used in vehicle-to-vehicle communications, and it also can help prevent the counterfeiting of messages exchanged with the Radio Frequency IDentification (RFID) tags that often help track packages in warehouses. They need to compliant NIST protocols as listed from time to time as per the user requirements.

1.3.23 Network infrastructure encryption

Storage servers and data must be secure throughout their entire transfer through a network from one location to another. Network infrastructure encryption refers to the idea that as data moves throughout a network, the reliant network infrastructure must use cryptography in a way impervious to an adversary's attempt to undermine data integrity, confidentiality or authenticity. Areas of concern include the Internet backbone over which much of the principal internet traffic travels between the Internet's many networks, the encryption between linked enterprise data centres and the encryption used to secure a wide-area network.

1.3.24 Quantum Computing

Quantum computing utilises the properties of quantum states, such as superposition and entanglement, to perform computation. It is a new branch of computing in which the fundamental computational unit is a qubit rather than bits, as in conventional computing. A Qubit can exist both in the logical 0 state and logical 1 state at the same time. In short, Quantum computers can perform very rapid parallel computations compared to classical computers for a particular class of problems.

1.3.25 Cloud Storage and Computing

Cloud storage allows users to access centralised shared resources (hardware and software) over a network. Cloud services have become ubiquitous due to the rise of high-capacity networks, the decreased cost of computers and data storage devices, and trends toward hardware virtualisation and infrastructure, platform, and software-as-a-service models. Cloud computing has numerous benefits. However, a significant issue with the help of cloud computing is that since these services are shared by many users and often not offered over a private network but rather to large organisations on an opt-in basis, encryption is essential. A quantum-safe server, endpoint, and network infrastructure security subsume options for quantum-safe cloud computing. Key exchange parameters for protocols such as Hypertext Transfer Protocol Secure (HTTPS) should no longer use RSA, DSA, or ECDSA. Fortunately, cloud computing offers the distinct advantage of having a centralised IT security management system across many applications and businesses, reducing security overhead for individual enterprises and consequently offering an easier transition to quantum-safe protocols. This transition is essential in particular because cloud storage is, by definition, remotely accessed, requiring data to traverse a public network between the user and the cloud. The need for strong encryption is further amplified by the multitude of distinct and untrusted users sharing the infrastructure.

1.3.26 Cryptography-as-a-Service

Deploying cryptographic keys to endpoints such as smartphones, virtual machines in the public cloud and smart grid equipment is risky. Therefore, this proposes a Cryptography as a Service (CaaS) model, which allows cryptographic operations to be performed without exposing cryptographic keys and recommends overcoming the pitfalls associated with this technology. Keyed cryptographic operations, such as encryption and decryption, are performed by a CaaS provider on behalf of a device via web services APIs. Cryptography as a service has been defined as being "Keyed cryptographic operations, such as

encryption and decryption that are performed by a CaaS provider on behalf of a device via web service APIs". The way that the "as a service" architecture works is through the implementation of HTTP and systems such as REST and SOAP. The overall architecture is extremely similar to Public Key Authorities (PKA) and Certificate Authorities (CA). The cryptographic keys used to perform these operations are stored within the CaaS provider, so devices do not possess these keys at any time (refer figure 8).

Figure 8: Block Diagram - Cryptography-as-a-Service

1.3.27 Cryptography Service Provider (CSP)

As organisations continue to test and integrate cloud computing into their IT environments, Cryptography-as-a-service and Entropy-as-a-service are into service to safeguard cryptographic keys with the same dynamic and virtualised attributes of cloud computing environments. Additionally, when storing data in multi-clouds, using native encryption from cloud service providers creates silos of data and the risk of not having full control over your keys and data. On-
premises Hardware-Secure-Module(HSM) diminish those silos and enable users to know the whereabouts of their keys at all times.

BYOE (bring your encryption), or BYOK (bring your keys), is a security model tailored explicitly to cloud computing. It allows cloud service customers to use their encryption tools and manage their encryption keys. A cryptographic Service Provider (CSP) allows Cryptographic applications and services to access secure cryptographic operations and Key management. This provider uses the standard REST API, JCE (Java Cryptographic Extension) programming interface. PKCS#11, Cryptography API: Next Generation (CNG), HTTPS, Web API (W3C), Microsoft CAPI, and OpenSSL.

1.3.28 Security Services

Encryption is vital in protecting sensitive data transmitted over an unsecured network or stored at rest in computer systems. During the transfer of data over an unsecured network, a cryptographic system should ensure the following security services to ensure the security of the system or data transmission.

i) Approved Confidentiality Technique:

The data in network traffic must be available only to the intended recipient. In other words, the data in network traffic must not be available to anyone other than the intended recipient.

ii) Approved Integrity Technique:

The data in network traffic must not be altered while in a network. In other words, the recipient's data must be the same as the data sent by the Sender.

iii) Approved Authentication Technique:

The Sender and the Recipient must prove their identity to each other.

iv) Access Control:

The principle of access control decides who should be capable of accessing information or a system through a communication link. It supports the avoidance of unauthorised use of a resource.

v) Non-repudiation:

Non-repudiation prevents either sender or receiver from adverse a transmitted message. Therefore, when a message is sent, the receiver can validate that the asserted sender sent the message. Similarly, when a message is received, the sender can validate that the asserted receiver received the message.

1.4. Functional requirements of a cryptographic system

Based on network deployment topologies, the cryptographic system should work in point-to-point/ point-to-multipoint / multipoint-to-multipoint mode. The cryptographic system shall provide Ethernet payload encryption over a point-to-point network. Encryption of standard Ethernet frame payload and Ethernet frames with multiple VLAN tags (Q-in-Q) using operator-selected symmetric key encryption scheme (optional for defence/user requirements for customisation, in case required) foolproof and fully reprogrammable (preferably FPGA based or equivalent on any programmable device on H/W and or stack over S/W).

It must be possible for an operator to select a particular encryption scheme for payload encryption system wise.

- i. It shall provide confidentiality and protection from firmware upgrades.
- ii. It shall support Policy based encryption.
- iii. It shall provide data protection against unauthorised access by users and processes in physical, virtual, and cloud environments so that implementation is seamless and transparent to application/presentation of layer of system and its storage. So it can work across an enterprise's entire environment.
- iv. Regardless of performance level, the cryptographic system shall be interoperable with the appropriate Application interface.
- v. It shall provide confidentiality using standard encryption algorithms in a Quantum-safe cryptosystem and applicable algorithms in asymmetric and hash functions as per the product's specification sheet.
- vi. It shall support encryption through a proprietary encryption algorithm also.

Table 2: Functional requirements of a cryptographic system

SI.	Parameter	Description and range	Reference	Demerica
No	Туре	of the Parameters	Standard(s)	Remarks
1	Traffic type	Unicast/Multicast/Broadc ast	TCP/IP (Ipv4/Ipv6)	Confirmation as per the RFCs
	No of			Atleast upto
2	Concurrent	User to server mode		100/500
	connection			connections
3	Direction of data transmission	Full duplex		Low overhead bits
4	Separation of data/control plane	Separation of Control plane and data plane		Physical and logical separation of data and control plane
5	Latency@ specific rate@ server/client	Latency at node (Non- aggregation state)	Not more than 10 µsec on data@10 GB maximum	independently of the packet/Ethernet frame size
6	Support of Jumbo frames	More than the standard ethernet frame size of any size		Beyond standard ethernet frame size
7	Mode of secure key uploading	Manual/Automatic		As applicable according to secure level 1/2/3/4
8	Encryption Modes	Block ciphers (ECB, CBC)	ISO/IEC 18033-3 Encryption Algorithms-Part 3:	NIST listed : CMAC, XTS- AES,CCM,KW/KWP /TKW, GCM/GMAC/XPN
9	Encryption Modes	Stream ciphers (CFB, OFB)	ISO/IEC 18033-4 Encryption Algorithms-Part 4	

SI.	Parameter	Description and range	Reference	Domorka
No	Туре	of the Parameters	Standard(s)	Remarks
	Asymmetric		ISO/IEC 9796-2	techniques —
10	algorithms	Integer factorisation	Information	Digital signatures
	and	based techniques	technology–	with message
	techniques		Security	recovery – Part 2
	Asymmetric		ISO/IEC 9796-3	
	algorithms	Discrete logarithm based	Information	Digital signature
11	and	tochniquos	technology–	with message
	tochniquos	lechniques	Security	recovery – Part 3
	techniques		techniques	
12	Asymmetric algorithms and techniques	Digital signatures	ISO/IEC 14888 (all parts) Information technology—	Security techniques – Digital Signatures
13	Asymmetric algorithms and techniques	Cryptographic techniques based on elliptic curves	ISO/IEC 15946 (all parts) Information technology–	Security techniques
14	Asymmetric algorithms and techniques	Asymmetric cryptographic algorithms	ISO/IEC 18033-2: Information technology—	Security techniques — Encryption Algorithms Part 2:
15	Message Authenticatio n Codes (MAC)	Mechanisms using a dedicated hash-function	ISO/IEC 9797-2 Information technology– Security techniques also Message Authentication Codes (MACs) - Part 2	FIPS-198, RFC 4868 for IPsec

SI.	Parameter	Description and range	Reference	Domorka
No	Туре	of the Parameters	Standard(s)	Remarks
		Hash functions using an	ISO/IEC 10118-2	Security techniques
16 Hash functions	n bit block ciphor	Information	– Hash functions –	
		n-bit block cipher.	technology –	Part 2
		Dedicated bash	ISO/IEC 10118-3	Security techniques
17	Hash functions	functions	Information	– Hash functions –
			technology –	Part 3
		Hash functions using	ISO/IEC 10118-4	Security techniques
18	Hash functions	modular arithmatic	Information	– Hash functions –
			technology –	Part 4
19	Authentication	Mechanisms using symmetric encipherment algorithms.	ISO/IEC 9798-2 Information technology —	Security techniques – Entity authentication – Part 2
20	Authentication	Mechanisms using digital signature techniques.	ISO/IEC 9798-3 Information technology – Security techniques –	Entity authentication – Part 3
21	Authentication	Mechanisms using a cryptographic check function.	ISO/IEC 9798-4 Information technology –	Security techniques – Entity authentication – Part 4
22	Authentication	Mechanisms using zero- knowledge techniques.	/IEC 9798-5 Information technology –	Security techniques – Entity authentication – Part 5
23	Authentication	Mechanisms using manual data transfer	ISO/IEC 9798-6 Information technology —	Security techniques – Entity authentication – Part 6

SI.	Parameter	Description and range	Reference	Pomarka
No	Туре	of the Parameters	Standard(s)	Remarks
		Machanisms using	ISO/IEC 11770-2	Security techniques
24 Authentication	Authentication	symmetric tochniques	Information	Key Management
		symmetric techniques	technology	Part 2
		Mechanisms using	ISO/IEC 11770-3	Security techniques
25	Authentication	asymmetric techniques	Information	– Key Management
			technology –	– Part 3
			ISO/IEC 11770-4	
	KEM based on	Key Establishment	Information	Key Management –
26	weak secrets	Mechanisms (KEM) for	technology –	Part 4
	weak seerets.	all types	Security	
			techniques –	
		Truly Random Number Generation (TRNG)		Developers must
		Pseudo-Random		demonstrate that
		Number Generation		their entropy
		(PRNG).		source is sufficiently
		Quantum Random		random through a
		Number Generation		combination of
	Deve de vec la it	(QRNG).	ISO/IEC 18031	design and/or test
27	Random Di	RNGs require entropy,	Information	processes and
	generation	and entropy originates	technology	continuous checks
		from a noise source.		during operation.
		Noise sources can be		Any fault could
		divided into two		have catastrophic
		categories: Physical		consequences for
		noise sources use		generating secure
		dedicated hardware to		cryptographic keys.
		generate randomness.		
	Software/	The cryptographic	ISO/IEC	A validation
28	Firmware		19790:2012/Cor.1:	authority shall
load	loading		2015(E) 7.4.3.4	validate the loaded

SI.	Parameter	Description and range	Reference	Remarks
No	Туре	of the Parameters	Standard(s)	
		software or firmware		software or
		from an external source.		firmware before
				loading.
		Cryptographic module		
		pre-operational and		Canditional colf
		conditional self-tests		 software or firmware before loading. Conditional self- tests shall be performed when an applicable security function or process is invoked. For security and privacy requirements, small devices, such as loT devices, RFID tags, industrial controllers,
	Self-test for	provide the operator	ISO/IEC	
29	29 of H/W and S/W modules	assurance that faults	19790:2012/Cor.1: 2015(E) 7.10.1	performed when an
		have not been		applicable security
		introduced that would		function or process
		prevent the module's		is invoked.
		correct operation.		
				For security and
		NICT approved		privacy
		tachnique for AEAD and		requirements, small
20	Lightweight	bashing protost against	FIPS 197, SP 800-	devices, such as IoT
50	Cryptography		38D, FIPS 180-4	devices, RFID tags,
		foult attacks atc		industrial controllers,
				sensor nodes, smart
				cards, etc.

Note: These parameters are applicable based on the product and which algorithms and Key sources are implemented in Quantum-safe(or Post-quantum) or Classical (pre quantum-era) cryptographic systems. Appropriate parameters are only to be confirmed with relevant products. Similarly applicable to all the tables for meeting conformity assessment of any parameters in this document.

1.5. Operational requirements of a cryptographic system

- 1.5.1 The equipment should be able to work without any degradation in the saline atmosphere near coastal areas and should be protected against corrosion.
- 1.5.2 Visual indication to show power ON/OFF status shall be provided.
- 1.5.3 It shall provide the requisite alarms.
- 1.5.4 Transactions logs and their period to be maintained per user requirements.

SI. No	Name of the Sub parameter	Types of Parameters range	Reference Standard(s)	Remarks
1	Module's version	The cryptographic module shall output the name or module identifier and the versioning information	ISO/IEC 19790:2012 (E)7.4.3.1 (a)	Hardware, software and/or firmware versioning information
2	Status	The cryptographic module shall output the current status	ISO/IEC 19790:2012 (E) 7.4.3.1 (b)	Visual indicators in response to a service request/ normal state
3	Self-tests	pre-operational self-tests before loaded code can be executed	ISO/IEC 19790:2012 (E) 7.4.3.1 (c)	Pre- operational to confirm reflects the status
4	Approved Security function test	approved security functions	ISO/IEC 19790:2012 (E) 7.4.3.1 (d)	at least one test in the approved

Table 3: Operational requirements of a cryptographic system

TEC 91010:2023

				mode of
				operation
		Perform zeroisation		Zeroisation is
		(zeroise all unprotected	ISO/IEC	immediate and
5	Zeroisation	SSPs and key components	19790:2012 (E)	uninterruptable
		within the module at all	7.4.3.1 (e)	in Seurity Level
		security levels)		4
				Provided
	Mode of		ISO/IEC	all pre-
6	operation	Normal/degraded	19790:2012(E)	operational
	operation		7.2.4	self-tests pass
				Bypass
				capability only
				if the capability
		Indicate whether the	ISO/IEC	to prevent the
7	Bypass test	Bypass capability is	19790:2012(E)	inadvertent
		activated or not	7.4.3.2	bypass of
				plaintext data
				due to a single
				error.
				this
		Indicate the capability of a		configuration
	Solf-Initiated	crypto module without		may be
8	cryptographic	being configured by the	19790.2012/E	preserved over
		Crypto Officer. The status		resetting,
		will be indicated in case	1.4.3.3	rebooting, or
		activated		power cycling of
				the module

9	Operational environment	i. A non-modifiable operational environment ii. A limited operational environment iii. A modifiable operational environment	ISO/IEC 19790:2012/C or.1:2015 (E) 7.6	Functions may be added or modified within the operational environment.
10	Life-cycle assurance	Confirm the best practices by the vendor of a cryptographic module during the design, development, operation and end of life of a cryptographic module.	ISO/IEC 19790:2012 (E) 7.11	The vendor needs to confirm the following stages
11	Power	AC supply	During DUT	110-230V +10% 50/60 Hz AC
12	DC power	DC Power supply Range from -40 V to -60 V (from renewable sources also)	During DUT	AC or DC supply or both as optional
13	Size	Dimensions in mm or inches in length, width and height	Dimensions indicate multiple 1U size	Desirable is 1U size or optional able to place in the rack
14	Cooling	a) Requirement of Ingress or Egress fans (suck and exhaust kind of setup).		Depending on the environmental conditions a fan is not mandatory, but maintaining temperature is a prime concern.

15	Min Altitude without any degradation	Equipment without any degradation at an altitude of upto 3,000 meters.		The manufacturer shall guarantee satisfactory performance
16	Power Supply Alarm	Any visual indicator(G/R)		Indicate the status of power AC/DC.
17	Encryption/De cryption Alarm	Any visual indicator(G/R or any other colour)		To indicate status
18	Fault Indicator Alarm	Any visual indicator(G/R)	Log message and visual indicator	To indicate status
19	Capable of functioning in a saline environment	Without any degradation system able to function		Self certificate to be submitted if no test environment is available.

1.6. Interface requirements of a cryptographic system

The cryptographic system shall support 10/100/1000/2500/10000 BASE-TX electrical or optical interface or any open standard port for management as per the user requirement. Hardware/Software of Plaintext Interface shall be physically separate from Hardware/Software of Cipher interface.

Table 4: Interface requirements of a cryptographic system

SI. No	Name of the Sub	Types of Parameters range	Reference Standard(s)	Remarks
	parameter			
1	Manageme	Optical//Ethernet (RJ45)	ISO/IEC,	i. Hardware module
	nt Interface	Ethernet data input	19790 para	Interface (HMI) Data
		through the command line	7.10.2	port
		interface also.SNMP v3 or		Management port.
		above, or XML/JSON shall		ii. Software or
		be supported for		Firmware Module
		ems/nms/noc.		(SFM) Interface
2	Data input	Interface (plain text,	ISO/IEC,	Support of SFP/SFP+.
	interface	cipher text and SSP)	19790	iii. Hybrid Software or
			Cor.1:2015 (E)	Hybrid Firmware
			para 7.3.3 (a)	Interface(HSMI or
3	Data	Interface (plain text, cipher	ISO/IEC,	HFMI) Plain Text/
	output	text and SSP)	19790	Cipher Interface.
	interface		Cor.1:2015 (E)	
			para 7.3.3 (b)	
4	Control	All input commands,	ISO/IEC,	Clock input, function
	input	signals, and control data	19790	calls and
	interface		Cor.1:2015 (E)	manual controls such
			para 7.3.3 (c)	as switches, buttons,
				and keyboards
5	Control	All output commands,	ISO/IEC,	Inhibited when the
	output	signals, and control data	19790	cryptographic module
	interface		Cor.1:2015 (E)	is in an error state
			para 7.3.3 (d)	unless exceptions are
				specified
6	Entropy	Dependent on external		Most operating
	Source	triggers to generate		systems have built-in
	input	random numbers. Non-		crypto PRNGs. Most of

r				
		deterministic inputs in the		them are software
		form of physical		based but some can
		measurements of		also be pure hardware.
		temperature or phase noise		In Linux, the device files
		or clock signals, generate		/dev/random and
		unpredictable numbers as		/dev/urandom are the
		their output. (There are,		user and interfaces to
		however, some concerns		the crypto RNG, which
		about the security of this		can reliably generate
		type of random number		random bits.
		generator, mainly since		
		RNGs are a very good		
		target for cryptographic		
		backdoors.)		
7	Power	(All external electrical	ISO/IEC, 19790	Except in the software
	interface	power that is input to a	Cor.1:2015 (E)	module, power is
		cryptographic module)	para 7.10.3 (f)	provided internally by
		Except for the		the source of the
		software/firmware		battery.
		cryptographic modules		
8	Status	All output signals,	ISO/IEC, 19790	Error indicator,
	output	indicators, and status data	Cor.1:2015 (E)	including return codes,
		and physical indicators	para 7.10.3 (e)	display, indicator
		such as visual, audio		lamps, buzzer, tone,
				ring, vibration
9	Trusted	Link for the transmission of	ISO/IEC, 19790	For Security Level 4,
	channel	unprotected plaintext	Cor.1:2015 (E)	multi-factor identity-
	(Security	CSPs, key components and	para 7.3.4	based authentication
	Level 3 and	authentication data		shall be employed for
	above)	between the cryptographic		all services utilising the
		module and the sender or		trusted channel
		receiver endpoint of the		
		cryptographic module		

1.7. Interoperable requirements of a cryptographic system

Interoperability is one of the essentials to making seamless internetwork function in a heterogeneous network environment. The application service layer in the cryptographic system communicates with the key management controller. Communication protocol and data format for a quantum key distribution (QKD) network or any Key source network to supply cryptographic keys to an application, i.e., a Cryptographic system.

Sl. No	Name of	Types of Parameters	Reference	Remarks
	the Sub	range	Standard(s)	
	parameter			
1	IP Layer	Internet Protocol	IETF RFC	Confirmation of
		(IP) IPV4/IP6,		interworking on IPv4
		Internet Control		and IPv6 interworking
		Message Protocol		
		(ICMP), Internet		
		Group Management		
		Protocol (IGMP),		
		IPSec		
2	Authenticati	CA or other agency		RADIUS server
	on			
3	Encryption	Various encryption	NIST standards	Devices
		methods as listed		
4	Key	During a key	OASIS standard	NIST standard
	exchange	exchange with other		documents also
	(KMIP)	systems		
5	API with	REST-based API	API using the	The standard REST API,
	QKD	Code for middleware	HTTPS protocol	JCE (Java
	interface	function	and data	Cryptographic
			encoded in the	Extension)
			JSON format <i>as</i>	programming
			per IETF RFC 8259	interface, is used.

Table 5: Interoperable requirements of a cryptographic system

TEC 91010:2023

Page **50** of **91**

				-
				PKCS#11, Cryptography
				API: Next Generation
				(CNG), HTTPS, Web API
				(W3C), Microsoft CAPI,
				and OpenSSL.
6	Inter Secure	Master SAE to	QKD link as	
	Application	Slave SAE	per the	SAE of
	Entity (SAE)	communication	NIST/ETSI	cryptography is
			standards	connected to the
				KME of QKD.
7	SSH	user authentication	RFC 4252, RFC	SSH may be used in
		layer, transport	4253, RFC 4254	several
		layer, connection		methodologies
		layer		
8	TLS	TLS v1.3 or above	IETF RFC 8446	
9	Entropy	Proven randomness	NIST standards	e.g. Clock, CPU,
	source			special circuitry,
				external dongle
10	Clock	Internal circuit or		For control functions
		External I/O		and timing/ticks
				management
11	Link layer	Tunnels, PPP, MAC	IETFs relevant	Layer 2 protocol
	protocols		RFCs	communications

1.8. Quality requirements of a cryptographic system

- 1.8.1 The manufacturer shall furnish the MTBF values. A minimum value of MTBF shall be 10,000 hours. The calculations shall be based on the guidelines specified in the standard.
- 1.8.2 The product/systems shall be manufactured by the international quality management system ISO 9001:2000, for which the manufacturer should be duly accredited. A quality plan describing the manufacturer's quality assurance system must be submitted.

1.8.3 The product/systems shall conform to the requirements for the environment specified in document QM 333 {Latest issue: March 2010}: " Standard for environmental testing of Telecommunication Equipment" The applicable tests shall be for environmental category B2, including vibration test.

Sl.No	Name of the Sub	Description of	Reference	Remarks
	parameter	Parameters and its	Standard (s)	
		range		
1	Operating	0°C to +60°C and	IEC/ISO	For defence
	Temperature	defence and space		and space
		requirements shall work		requirements
		in the range -100°C to		to be met as
		200°C		per user
				specs.
2	Humidity	10 to 90% RH	IEC/ISO	
3	Reliability	(Indicate percentage in		Updated
		operational status)		based on the
				operational
				status
4	Basic	BIS adopted ISO	IEC 60068-2-27/	User can
	environme	standards	IS 9000	define specific
	ntal Test			requirements
5	MTBF	Metric		To be stated
6	MTTR	Metric		To be stated
7	Manufactured	International quality	ISO	
	process	management	9001:2000	
	compliance			

Table 6: Quality requirements of a cryptographic system

1.9. EMI/EMC Requirements of a cryptographic system

The equipment shall conform to the EMC requirements as per the following standards and limits indicated therein. An accredited test agency shall furnish a test certificate and test report.

a) Conducted and radiated emission:

Name of EMC Standard: "CISPR 32 (2015) - Limits and methods of measurement of radio disturbance characteristics of Information Technology Equipment".

Limits: -

- i. To comply with Class B limits of CISPR 32
- ii. For Radiated Emission tests, limits below 1 GHz shall be as per relevant limits for measuring the distance of 10m OR as per relevant limits for measuring the distance of 3m.

b) Immunity to Electrostatic discharge:

Name of EMC Standard: IEC 61000-4-2 (2008) "Testing and measurement techniques of Electrostatic discharge immunity test". Limits: -

- i. Contact discharge level 2 {± 4 kV} or higher voltage;
- ii. Air discharge level 3 $\{\pm 8 \text{ kV}\}$ or higher voltage;

c) Immunity to radiated RF:

Name of EMC Standard: IEC 61000-4-3 (2010) "Testing and measurement techniques-Radiated RF Electromagnetic Field Immunity test".

Limits: -

For Telecom Equipment and Telecom Terminal Equipment with Voice interface

(S)

- i. Under Test level 2 {Test field strength of 3 V/m} for general purposes in the frequency range 80 MHz to 1000 MHz and
- ii. Under test level 3 (10 V/m) for protection against digital radio telephones and other RF devices in the frequency ranges 800 MHz to 960 MHz and 1.4 GHz to 6.0 GHz.
- iii. For Telecom Terminal Equipment without Voice interface (s)
- iv. Under Test level 2 {Test field strength of 3 V/m} for general purposes in the frequency range 80 MHz to 1000 MHz and for protection against digital radio telephones and other RF devices in frequency ranges 800 MHz to 960 MHz and 1.4 GHz to 6.0 GHz.

d) Immunity to fast transients (burst):

Name of EMC Standard: IEC 61000- 4- 4 (2012) "Testing and measurement techniques of electrical fast transients/burst immunity test". Limits: -

Test Level 2, i.e., a) 1 kV for AC/DC power lines; b) 0. 5 kV for signal/control/ data/telecom lines;

e) Immunity to surges:

Name of EMC Standard: IEC 61000-4-5 (2014) "Testing & Measurement techniques for Surge immunity test".

Limits: -

- i. For mains power input ports: (a)2 kV peak open circuit voltage for line-toground coupling (b) 1 kV peak open circuit voltage for a line-to-line coupling
- ii. For telecom ports: (a) 2 kV peak open circuit voltage for a line to ground
- iii. (b)2 kV peak open circuit voltage for a line-to-line coupling.
- f) Immunity to conducted disturbance induced by Radiofrequency fields:

Name of EMC Standard: IEC 61000-4-6 (2013) "Testing & measurement techniques-Immunity to conducted disturbances induced by radio- frequency fields".

Limits: -

- i. Under the test level 2 {3 V r.m.s.} in the frequency range 150 kHz-80 MHz for AC / DC lines and Signal /Control/telecom lines.
- g) **Immunity to voltage dips & short interruptions** (applicable to only ac mains power input ports, if any):

Name of EMC Standard: IEC 61000-4-11 (2004) "Testing & measurement techniques- voltage dips, short interruptions and voltage variations immunity tests".

Limits: -

i. A voltage dip corresponding to a reduction of the supply voltage of 30% for 500ms (i.e., 70 % supply voltage for 500ms)

- ii. A voltage dip corresponding to a reduction of the supply voltage of 60% for 200ms; (i.e., 40% supply voltage for 200ms)
- iii. A voltage interruption corresponds to a reduction of a supply voltage of > 95% for 5s.
- iv. A voltage interruption corresponds to a reduction of a supply voltage of >95% for 10ms.

Note 1: Classification of the equipment:

Class B: Class B is a category of apparatus that satisfies the class B disturbance Limits. Class B is intended primarily for use in the domestic environment and may include the following :

- Equipment with no fixed place of use; for example, portable equipment powered by built-in batteries;
- Telecommunication terminal equipment powered by the telecommunication networks
- Personal computers and auxiliary connected equipment

Please note that the domestic environment is an environment where the use of broadcast radio and television receivers may be expected within a distance of 10 m of the apparatus connected.

Class A: Class A is a category of all other equipment that satisfies the class A limits but not the class B limits.

Note 2: The testing agency for EMC tests shall be an accredited agency and details of accreditation shall be submitted.

Note 3: For checking compliance with the above EMC requirements, the method of measurements shall follow TEC Standard No. TEC/SD/DD/EMC-221/05/OCT-16 and the references mentioned therein unless otherwise specified. Alternatively, corresponding relevant Euro Norms of the above IEC/CISPR standards are also acceptable subject to the condition that frequency range and test level are met as per the above mentioned sub clauses (a) to (g) and TEC Standard No. TEC/SD/DD/EMC-221/05/OCT-16.

SI. No	Name of the Sub	Types of	Reference	Remarks
	parameter	Parameters	Standard(s)	
		range		
1	Conducted and radiated emission:		IEC CISPR 32 (2015) AMD1:2019	AC or DC supply voltage not exceeding 600 V
2	Immunity to Electrostatic discharge		IEC 61000-4- 2 {2008)	static electricity discharges from operators directly and from personnel to adjacent objects
3	Immunity to radiated RF		IEC 61000-4- 3 (2020)	
4	Immunity to fast transients (burst):		IEC 61000- 4- 4 {2012)	
5	Immunity to surges:		IEC 61000-4- 5 (2014)	
6	Immunity to conducted disturbance induced by Radio frequency fields:		IEC 61000-4- 6 (2013)	Radiofrequency (RF) transmitters in the frequency range of 150 kHz up to 80 MHz
7	Immunity to voltage dips & short interruptions		IEC 61000-4- 11 (2020)	equipment with input current up to 16 A per phase

Table 7: EMI/EMC requirements of a cryptographic system

1.10. Safety Requirements of a cryptographic system

1.10.1 Electrical safety

IEC 62368-1 [replaced IS 13252-1/IEC 60950-1] is a primary reference for the safety of telecommunications equipment. Active electronics must comply with locally applicable electrical safety requirements in all cases. These safety parameters may include electrical insulation, grounding, fuses, current loss switches, etc. In case remote line powering is applied, it should comply with [ITU-T K.50], [ITU-T K.51] and [IEC 60950-21]. The safe working practices described in [ITU-T K.64] should be followed when work is carried out outside plant electronic equipment.

1.10.2 Laser safety

Since the box house active optical devices, it should comply with IEC 60825-1 and IS 14624-2/IEC 60825-2 for optical safety requirements.

Note: This test shall be applicable if laser components are directly mounted in the box.

Sl. No	Name of Description of		Reference	Remarks
	the	Parameters	Standard(s)	
	parameter	and its range,		
		if any		
1	Hazard-based	Audio/video,	IEC 62368-1:	Electrical
	product-safety	information and	2018 and COR1:	safety
	standards for	communication	2020	for Hardware
	ICT and AV	technology		or S/W and or
	equipment	equipment - Part 1		F/W over H/W
2	Safe limits for	telecommunication	ITU-T K.50	Electrical
	operating	systems		safety
	voltages and	powered over the		for Hardware
	currents	network		

Table 8: Safety requirements of a cryptographic system

3	safety criteria for	requirements	ITU-T K.51	persons who
	telecommunicat	intended to reduce		may come
	ion network	risks of fire, electric		into contact
	equipment	shock or		with the
		injury		equipment
4	Safe working	working practices	ITU-T K.64	The specific
	practices for	for service		environments
	outside	personnel to help		covered are
	equipment	them work		characterized by wet
	installed	safely in		conditions or
	in particular	telecommunication		close proximity to
	environments	installations		exposed metallic
				parts.
5	Information	Remote power	IEC 60950-21	Part 21 of IEC
	Technology	feeding		60950
	Equipment –			
	SAFETY			
6	Safety of laser	wavelength range	IEC 60825-1	Laser safety
	products	180 nm to 1 mm		
	emitting laser			
	radiation			
7	safe of optical		IS 14624-2/IEC	does not
	fibre		60825-2	address safety
	communication			issues
	systems (OFCSs)			associated
				with explosion
				or fire
8	Public safety:	Safety from	EU	restricts
	RoHS	Hazardous	2015/863	chemicals and
	compliance	material	directive	heavy metals in
				electronic
				products

1.11. Security services requirements of a cryptographic system

The following security services are required for the enhancement of security;

- (i) Authentication mechanisms may be needed within a cryptographic module to authenticate an operator accessing the module and to verify that the operator is authorised to assume the requested role and perform services within that role. The cryptographic system shall support lossless data encryption/ decryption key change.
- (ii) It should implement a key integrity check and authentication mechanism through a suitable hashing algorithm.
- (iii) Encryption keys should be encrypted, stored in a secure device and only accessible to the user, regardless of data and key storage methods.

1.11.1 Security service level classification

The cryptographic techniques are identical over the four security levels. The security requirements cover areas relative to the design and implementation of a cryptographic module. The selection of a cryptographic module is based on an overall security rating of a to provide a level of security appropriate for the security requirements of the application and environment in which the module is to be utilised and for the security services that the module is to provide.

- (i) Security Level 1: Provides a baseline level of security. Basic security requirements are specified for a cryptographic module (e.g. at least one approved security function or approved sensitive security parameter establishment method shall be used). Ideally appropriate for security applications where controls, such as physical security, network security, and administrative procedures, are provided outside the module but within the deployable environment.
- (ii) Security Level 2: Enhances the physical security mechanisms of Security Level 1 by adding the requirement for tamper evidence, including tamperevident coatings or seals or pick-resistant locks on removable covers or doors. Security Level 2 allows a cryptographic software module to be executed in an adaptable environment that implements role-based access

controls or, at the minimum, a discretionary access control with the robust mechanism of defining new groups and assigning restrictive permissions through access control lists (e.g. ACLs), and with the capability of setting each user to more than one group, and that protects against unauthorised execution, modification, and reading of cryptographic software.

- (iii) Security Level 3: Provides additional requirements to mitigate unauthorised access to SSPs held within the cryptographic module. Physical security mechanisms required at Security Level 3 are intended to have a high probability of detecting and responding to attempts at direct physical access, use or modification of the cryptographic module and probing through ventilation holes or slits. The physical security mechanisms may include solid enclosures and tamper detection/response circuitry that zeroise all CSPs when the removable covers/doors of the cryptographic module are opened. Security Level 3 requires identity-based authentication mechanisms, enhancing the security provided by the role-based authentication mechanisms specified for Security Level 2. A cryptographic module authenticates the identity of an operator and verifies that the identified operator is authorised to assume a specific role and perform a corresponding set of services. Security Level 3 requires manually established plaintext CSPs to be encrypted, utilise a trusted channel or use a split knowledge procedure for entry or output.
- (iv) Security Level 4:The physical security mechanisms provide a complete envelope of protection around the cryptographic module to detect and respond to all unauthorised attempts at physical access when SSPs are contained in the module, whether external power is applied or not. Penetration of the cryptographic module enclosure from any direction is highly likely to be detected, resulting in the immediate zeroisation of all unprotected SSPs. Security Level 4 introduces the multi-factor authentication requirement for operator authentication. At a minimum, this requires two of the following three attributes. At Security Level 4, a cryptographic module is required to include special environmental protection features designed to detect voltage and temperature

boundaries and zeroise all unprotected SSPs to provide a reasonable assurance that the module will not be affected when outside of the normal operating range in a manner that can compromise the security of the module.

T 0	~ ··	•	•			1 • •
Table 9:	Security	services	requirem	ents of a	cryptogram	ohic system
10010 01	Security	00111000		01100 01 0		51.110 0 5 0 00111

SI.	Parameter	Security	Security	Security	Security	Reference
No.	Falametei	Level-1	el-1 Level-2	Level-3	Level-4	standards
1	Cryptograp hic Module Interfaces	Required and interfaces. Sp all interfaces and output d	d optional becification of and all input ata paths.	Trusted chan	nel.	
2	Roles, Services, and Authenticati on	Logical separation of required and optional roles and services.	Role-based or identity- based operator authenticati on.	Identity- based operator authenticati on.	Multi-factor authenticati on.	ISO/IEC 19790:2012 / Cor.1:2015(E) 7.4.4.
3	Software/Fir mware Security	Approved integrity technique, or EDC- based integrity test. Defined SFMI, HFMI and HSMI.	An approved digital signature or keyed message authenticati on code- based integrity	Approved dig signature-bas test.	gital sed integrity	ISO/IEC 19790:2012 /
		Executable code.	test.			Cor.1:2015(E) 7.5

4	Operational Environmen t	Non- Modifiable, Limited or Modifiable. Control of SSPs.	Modifiable. Role-based or discretionar y access control. Audit mechanism	Non-modifia	ble	
5	Physical Security	Production- grade component s.	Tamper evidence. Opaque covering or enclosure.	Tamper detection and response for covers and doors. Strong enclosure or coating. Protection from direct probing. EFP or EFT.	Tamper detection and response envelope. EFP. Fault injection mitigation.	ISO/IEC 19790:2012 / Cor.1:2015 (E) 7.7.
6	Non- Invasive Security	The Module i invasive attac mitigation tee 1&2. Mitigatio	The Module is designed to mitigate against non- nvasive attacks. Documentation and effectiveness of nitigation techniques specified for security classes &2. Mitigation testing is essential in security classes			
7	Sensitive security parameter generation	Random bit g establishmen zeroization. A agreement u	generators, SSI t, entry and ou Automated SSI sing approved	P generation, utput, storage, P transport and methods.	and d SSP	ISO/IEC 19790:2012 / Cor.1:2015 (E) 7.9.7

8	Self-Tests	Manually esta may be enter in plain text Pre-operation and critical fu Conditional: C consistency, S	ablished SSPs ed or output nal: Software/f Inctional test. Cryptographic Software/firmv	Manually esta may be enter output in end via trusted ch split knowled procedures irmware integr algorithm, pai	ISO/IEC 19790:2012 / Cor.1:2015(
		bypass and c	ritical function	al test.		E) 7.9.2
9	Mitigation of other attacks	Specification which no test available curr	ication of Mitigation of attacks for no testable requirements are ble currently			ISO/IEC 19790:2012 / Cor.1:2015(E) 7.12
10	Replay attacks					To be verified
11	Fault injection attacks					To be verified
12	timing- based side- channel attacks					To be verified
13	Man-in-the -middle attack					To be verified

				ISO/IEC
	Documentat			19790:2012
14	ion and			/ Cor.1:
	validation			2015(E)
				Annex-A

1.12. Information for the procurer of the product for maintenance and operation

- 1.12.1 It shall support In-field firmware upgrades from time to time for a continuation of functionality with the advancement of technology and interoperable and supporting systems to make it compatible.
- 1.12.2 It shall support remote system Software/Firmware upgrades.
- 1.12.3 Purchaser may specify the functional requirement as per the parameters mentioned in Table 2 and the range of values from table number 10/11 to suit his requirements.
- 1.12.4 OEM has to comply with the mandatory parameters as envisaged in the product specification table.
- 1.12.5 The discretion of the Purchaser allows them to include the latest technical Specification as per their requirements in addition to mandatory parameters.
- 1.12.6 As and when software bugs are found/ determined, the Manufacturer shall provide patches/firmware replacement, if involved, as mutually agreed between the Purchaser of the instrument and supplier. Modified documentation, wherever applicable, shall also be supplied.
- 1.12.7 The manufacturer/supplier shall furnish the list of recommended spares.
- 1.12.8 The supplier shall have a maintenance/repair facility in India. The supplier shall furnish MTBF and MTTR values.
- 1.12.9 The Purchaser would like to stock the spares as and when the supplier decides to close down the production of the offered product. In such an event, the supplier shall give three years' notice to the Purchaser to stock the spares or agreed between them, whichever is applicable.

- 1.12.10 The accessories cables shall have a low attenuation cable link, either optical or ethernet cable of the latest. The vendor will submit the Specification for the same.
- 1.12.11 Purchaser would like to procure additional spares/sub-systems which comply with standards; the onus on OEM is to ensure the product shall work.
- 1.12.12 It shall support encryption through a proprietary encryption algorithm (optional for defence/space application users, wherever desired).
- 1.12.13 It must be possible for an operator to select a particular encryption scheme for payload encryption system wide.
- 1.12.14 It shall automatically exchange a new session key on a pre-set interval of 1-60 minutes.
- 1.12.15 The new session key shall be generated automatically by a True Random Number Generator (TRNG) or a Pseudo Random Number Generator (PRNG). QRNGs are preferred over other TRNGs and PRNGs.
- 1.12.16 These devices should support high entropy throughput with very high randomness (entropy)
- 1.12.17 It shall provide confidentiality-protected firmware/software upgrades.
- 1.12.18 The encryption devices should be future-proof and fully reprogrammable (preferably FPGA based) for an upgrade to new algorithms based on the user requirements or availability of technology from time to time.
- 1.12.19 Cryptographic system can also support Quantum-safe key exchange algorithms under the standardisation process of NIST, along with classical algorithms in a hybrid manner.
- 1.12.20 Remote management should be possible only through secure Management software with minimum 2-factor authentication with hardware binding.
- 1.12.21 Cryptographic system shall support SNMPv3 or the latest and shall provide multiple manager support.
- 1.12.22 Cryptographic system shall support audit and event logging with Syslog support.

- 1.12.23 Cryptographic system shall be able to work with the NTP server for time synchronisation.
- 1.12.24 Cryptographic system shall be able to work with RADIUS or TACAS+ server for authentication.

1.12.25 Repair procedure;

- (i) List of replaceable parts used to include their sources and the approving authority.
- (ii) Detailed ordering information for all the replaceable parts shall be listed in the manual to facilitate the reordering of spares as and when required.
- (iii) A systematic procedure for troubleshooting and sub-assembly replacement shall be provided. Test fixtures and accessories required for repair shall also be indicated. Systematic troubleshooting procedures shall be given for the probable faults with their remedial actions.

Note: The Purchaser may mention the repair manual requirement at the time of ordering.

- 1.12.26 Technical literature in Hindi or English of the instrument with block schematic diagrams shall be provided. The complete layout and circuit diagrams of various assemblies with test voltages and waveforms at different test points of the units shall be provided, wherever required. All aspects of installation, operation, maintenance and repair shall be covered in the manuals. The soft copy/hard copy of the manuals shall also be provided. The manual shall include the following two parts:
 - (i) Installation, operation and maintenance manual.
 - (ii) Safety measures to be observed in handling the equipment.
 - (iii) Precautions for setting up, measurements and maintenance
 - (iv) Product/equipment required for routine maintenance and calibration, including their procedures.
 - (v) Illustration of internal and external mechanical parts.
 - (vi) A detailed description of the operation of the software used in the equipment, including its installation, loading and debugging etc.

1.12.27 Identification of Equipment

- i) Equipment shall be marked with the supplier's or Manufacturer's logo/name.
- ii) The Model No., serial No., The month and year of manufacture shall be indicated by screen printing on the body of the equipment or by a tamper-proof sticker pasted on the body of the equipment.
- iii) Power Supply requirements shall be indicated on the body.
- iv) The above markings shall be legible, indelible and easily visible.

CHAPTER-2

Specifications and Certification

2.1 Specification requirements of the configuration of the product for Testing,Validation and Certification.

Classical cryptosystems are detailed in the chapter-1, and conformity assessment is based on the standards mentioned in the tables against standards for each parameter in Classical and Quantum-safe cryptographic systems. There are four types of cryptosystems, as envisaged in chapter -1 and four levels of security level against security services. Specifications are given for each category across all security levels. The user will have a choice to take as per the specifications of optional parameters in the list, not exhaust, and a user may seek more capabilities/proprietary algorithms as per the need basis within its capabilities.

2.1.1 Specification requirements of a Classical (pre-quantum era) cryptographic systems

SI.	Name of the	Security Le	Security Level 1/2/3/4				
No	parameter	НСМ	SCM	FCM	НуСМ		
1	Interface for	Ethernet	API	API	Ethernet/	Support	
	data	/optical			Optical/A	10/100/1000	
					PI	BASE-TX with	
						option SFP/SFP+	
						capable	
						transceivers	
2	Interface for	Ethernet/A	PI and CLI co	ompatibili	ty.	Support	
	management					10/100/1000	
						BASE-TX with	
						option SFP/SFP+	
						capable	
						transceivers	

Table 10: Specification requirements of a Classical cryptographic systems

3	Throughput/Inf	10Mbps/ 10	0Mbps/1Gb	ps/10 Gbp	S	Concatenation of
	ormation pay					data in case more
	load at		than one port			
	client/Spoke					
4	Throughput/Inf	100Mbps/10	Gbps/10Gbp	s/100 Gbp)S	10 times the
	ormation pay					client
	load at					requirements
	Server/Hub					atleast
5	Latency at	1/5/10 micr	oseconds			User Option
	client/Spoke					
6	Latency at	1/5/10 micr	oseconds			User Option
	Server/Hub					
7	No Concurrent	100/500 @:	server to ha	ndle simul	taneous	User Option
	connections	connection	S			
8	Level of	Very Low	Low	Medium	High	Digital Signature
	trustworthiness					Services (DSS)
	(Risk of					uses PKI to verify
	compromise)					the trustworthines
						of electronic
						signatures.
9	Error	The ECC str	ructure shou	ld have su	ufficient	Various
	Correction	weight wor	ds to resist a	attack in p	olynomial	message/key
	Code Rate	time. Achie	ves self-syna	chronisatio	on without	encoding or
	over the	degradatio	n of error co	prrecting c	apability.	reconciliation
	channel	Error detec	tion is comn	nonly real	ised using a	techniques that
		suitable has	sh function (specificall	у, а	usually encode
		checksum,	cyclic redun	dancy che	ck or other	one payload bit
		algorithms)	. A hash fun	ction add	s a fixed-	into several
		length tag [.]	to a messag	e, which e	nables	coefficients have
		receivers to	verify the c	elivered n	nessage by	been proposed.
		recomputir	ng the tag ar	nd compa	ring it with	
		the one pro	ovided.			

10	Symmetric Key	AES-128, AES-192, AES-256 and above,	Any proprietary
	encryption	AEAD (authenticated encryption protocol	algorithms as
		for smart and lightweight devices)	per the needs of
			the user.
11	Asymmetric	RSA-2048 and above, Elgamal, Elliptic	Capable of
	Key Encryption	Curve	perform any
			proprietary
			algorithms, if any
12	Key Exchange	Diffie-Hellman-2048 and above and	Any proprietary
	algorithms	ECDH	algorithms as per
			the needs of the
			user, if any
13	Кеу	Satisfy use cases of KEM by higher level	It uses
	encapsulation	security protocols such as TLS and	asymmetric
	mechanism	cryptographic schemes such as HPKE	(public key)
		(Hybrid Public Key Encryption).	algorithms. It is
		Allow service providers to plug in Java or	commonly used
		native implementations of KEM algorithms.	in hybrid
			cryptosystems.
14	Digital	RSA-2048 and above/ECDSA 224-255, 256	Also, proprietary
	Signature	and above/RSA-2048 and above or Elgamal	algorithms as per
			the user
			requirements, if
			any desired.
15	Hash Functions	SHA-2, SHA-3	User option, if
			any.
16	n-bit block	Electronic codebook (ECB), Cipher block	User option
	cipher	chaining (CBC), Cipher Feedback (CFB),	
		Output feedback (OFB), Counter (CTR)	
		Galois/Counter Mode(GCM)	
17	N/W Topology	Hub and spoke or Mesh network or Point -	User option
		to -Point or Point-to-Multipoint or Star	

18	Protocol	Seamless Interoperable	Protocols shall
	communication		function as per
	between Key		the user's
	Managers and		requirements
	the		within their
	Cryptographic		capabilities.
	module		

2.1.2 Specifications requirements of a Quantum-safe cryptographic systems Table 11: Specification requirements of Quantum-safe cryptographic systems

SI.	Name of the	Security Level 1/2/3/4				Remarks
No	parameter	НСМ	SCM	FCM	НуСМ	
1	Interface for data	Ethernet	API	API	Etherne	Support
		/optical			t/	10/100/1000
					Optical/	BASE-TX with
					API	option SFP/SFP+
						capable
						transceivers.
2	Interface for	Ethernet/API and CLI compatibility				Support
	management			10/100/1000		
				BASE-TX with		
				option SFP/SFP+		
				capable		
						transceivers.
3	Throughput/Info	10Mbps/ 100Mbps/1Gbps/10				Concatenation of
	rmation pay load	Gbps				data in case more
	at client/Spoke					than one port.
4	Throughput/Inform	100Mbps/1Gbps/10Gbps/100				10 times the client
	ation pay load at	Gbps				requirements
	Server/Hub					atleast, User
						option.

5	Latency at client/Spoke	1/5/10 microseconds				User Option
6	Latency at Server/Hub	1/5/10 mic	roseconds	User Option		
7	No Concurrent	100/500 @	server to ha	ndle		User Option
	connections	simultaneo	ous connecti			
8	Level of	Very Low	Low	Digital Signature		
	trustworthiness (Services (DSS)
	Risk of					uses PKI to
	compromise)					verify the
						trustworthiness
						of electronic
						signatures.
9	Error Correction	PQC lattice-based cryptography can				Various
	Code Rate over	profit from	n classical an	1	message/key	
	the channel	codes by c	combining B	DPC	encoding or	
		codes.		reconciliation		
		(Achieve q	techniques that			
		communic	usually encode			
		estimated	one payload bit			
		level and a decrease of the				into several
		communication overhead)			coefficients have	
			been proposed .			
10	Symmetric Key	Symmetric	NIST qualified			
	encryption	Twofish-256, SHA-512). Use 256 bits or more as the key length, AEAD				cases, AEAD
						encryption for
						smart devices.
11	Asymmetric Key	BIKE, Class	For NIST			
	Encryption					qualified cases
12	Key Exchange	Diffie–Hellman key exchange (DHKE)				For NIST qualified
	algorithms	and Elliptic-curve Diffie–Hellman				cases
		(ECDH), RSA-OAEP and RSA-KEM (RSA key transport), PSK (pre-shared key),				
		SRP (Secure Remote Password				
----	--------------------	---	--------------------			
		protocol), FHMQV (Fully Hashed				
		Menezes-Qu-Vanstone), ECMQV				
		(Ellictic-Curve Menezes-Qu-Vanstone)				
		and CECPQ1 (quantum-safe key				
		agreement).				
13	Key Encapsulation	CRYSTALS-KYBER Kyber-512, Kyber-	For NIST qualified			
	Mechanism (KEM)	768, and Kyber-1024	cases			
14	Digital Signature	CRYSTALS-Dilithium, FALCON, and	For NIST			
		SPHINCS+, Rainbow, GeMSS	qualified cases			
15	Hash Function	LMS, XMSS, SPHINCS+, HORS,	Hashing along			
		Cryptographic hashes (like SHA2,	AEAD for smart			
		SHA3, BLAKE2), SHA384, SHA512 and	devices			
		SHA3-384, SHA3-512, AEAD along with				
		hashing				
16	n-bit block cipher	Electronic codebook (ECB), Cipher	List of codes as			
		block chaining (CBC), Cipher Feedback	per the NIST			
		(CFB),Output feedback (OFB), Counter				
		(CTR), Galois/Counter Mode(GCM)				
17	N/W Topology	Hub and spoke or Mesh network or				
		Point -to -Point or Point-to-Multipoint				
		or Star				
18	Protocol	Seamless Interoperable with NIST	Protocols shall			
	communication	recommended and or Govt of	function as per			
	between Key	India/FIPS approved	the user's			
	Managers and the	protocols/algorithms.	requirements			
	Cryptographic		within their			
	module/system		capabilities.			

Note:

- i. All the specifications applicable for commercial products and as per the user requirements, environment parameters can be modified to comply the products for industrial/defence/Space requirements.
- ii. Proprietary/private algorithms are to be implemented by OEMs as per the user requirements. Aaccordingly, those parameters will be reflected as optional parameters in the user certificate unless data maintain under confidentiality.

2.2 TEC Certification

TEC offers a number of voluntary certification schemes based on its product and interface related technical standards. These schemes certify the product/equipment based on the Testing against the various parameters and conditions in the respective TEC technical standards. The Testing is generally carried out on-site at the OEMs premises or in a lab environment. TEC designated labs' test reports related to EMC, Safety, Environmental Testing, etc., are also accepted for these certifications. For more details, refer to the TEC portal (https://www.tec.gov.in). The different schemes under the Voluntary Certification Regime are as below;

2.2.1 Classification of Voluntary Certificates

(i) **Type Approval (TA):** Type Approval is the process of Testing and certification of telecom & related ICT product by the TEC Test Guide for conformance with the Standard for Generic Requirements for a Product/Equipment issued by TEC. Optional parameters per the user choice will be shown in the Certificate against a type of product/service if any deviation in the mandatory parameters in all respects from the procedure will be reflected in the Certificate.

(ii) Interface Approval (IA): Interface Approval is the process of Testing and certification of telecom and related ICT product, by the TEC Test Guide, for conformance with the Standard for Interface Requirements for a Product/Equipment issued by TEC. Optional parameters per the user choice will be shown in the Certificate against a type of product/service if any deviation in the mandatory parameters in all respects from the procedure will be reflected in the Certificate.

(iii) **Certificate of Approval (CoA):** Certificate of Approval is the process of Testing and certification of telecom & related ICT product (including integrated/innovative products & software in emerging technology like 5G adv/AI/ML/Metaverse/FSOC/Quantum tech etc.) as per Manufacturer's specifications. This Certificate is granted only when TEC does not have a Standard/Specifications for the Generic/ Interface Requirements of the Product. The Test Guide approved by TEC shall conduct the Testing. The objective should

be to complete the certification process as early as possible to encourage innovators/entrepreneurs/startups to seekcertification.

(iv) **Technology Approval:** Technology Approval is a process of testing and Certification of a prototype of a telecom and related ICT product developed by C-DoT, both public and private. Academic Institutions/ Research Organisations / Startups in the field of the sector. Optional parameters per the user choice will be shown in the certificate against a type of product/service if any deviation in the mandatory parameters in all respects from the procedure will be reflected in the Certificate.

2.2.2 Specific remarks to be mentioned in the Certificate

The following information shall be mentioned in the Certificate:

- i. Parameter name, description of message and range of value, reference standards, remarks on conformity assessment, details of lab, remarks.
- ii. Similarly, other parameters are given in Section 2.1 above.

2.2.3 Mandatory Certification

The Indian Telegraph (Amendment) Rules, 2017, provides that every telecom equipment must undergo mandatory Testing and certification before selling, importing, or using in India. Under these rules, the final detailed procedure for Mandatory Testing and Certification of Telecom Equipments(MTCTE) has been notified separately. The Testing is to be carried out for conformance to Essential Requirements for the equipment by Indian Accredited Labs designated by TEC. Based on their test reports, TEC shall issue a certificate.

Note: The eligible applicant shall offer the product to the RC Division, TEC-HQ (the nodal division for coordination), along with requisite documents. The RC Division will acknowledge the same and forward it to the concerned Core Division for further processing.

DEFINITIONS AND TERMINOLOGY

Algorithm:

A specified mathematical process for computation; is a set of rules that, if followed, will give a prescribed result.

Application link:

A communication link is used to provide cryptographic applications in the user network.

Asymmetric key:

A cryptographic key is used with an asymmetric key (public key) algorithm. The Key may be a private key or a public key.

Authentication:

It is a property of an entity or party whose identity establish with a required assurance. The authenticated party could be a user, subscriber, home environment or serving network.

Approved:

Any authorised agency of Govt of India/FIPS approved and/or NIST-recommended.

Authentication protocol:

A defined sequence of messages between an entity and a verifier enables the verifier to perform authentication of an entity.

Authorisation:

The granting of rights, which includes granting access based on access rights.

Availability:

The property of an entity is accessible and useable upon demand by an authorised entity.

Credential:

A set of data presented as evidence of a claimed identity and/or entitlements.

Confidentiality:

The property that information is not made available or disclosed to unauthorised individuals, entities, or processes.

Communication channel:

Two communicating parties use that for exchanging data encoded in a form that may be non-destructively read and fully reproduced.

Certificate Revocation List (CRL):

A list of certificates revoked without expiry by a Certification Authority.

Certification Authority (CA):

The entity in a public key infrastructure (PKI) is responsible for issuing certificates to certificate subjects and exacting compliance with a PKI policy.

Ciphertext:

Data in its encrypted form.

Compromise:

The unauthorised disclosure, modification, substitution, or use of sensitive data (e.g., a secret key, private key, or secret metadata).

Confidentiality:

The property that sensitive information is not disclosed to unauthorised entities (i.e., the secrecy of key information is maintained).

Cross-certify:

Establishing a trust relationship between two Certification Authorities (CAs) by signing each other's public key in certificates is called a "cross-certificate."

Cryptographic algorithm:

A well-defined computational procedure that takes variable inputs, including a cryptographic key (if applicable), and produces an output.

Cryptographic boundary:

An explicitly defined continuous perimeter that establishes the physical bounds of a cryptographic module and contains all the hardware, software, and or firmware components of a cryptographic module.

Cryptographic checksum:

A mathematical value is created using a cryptographic algorithm assigned to data and later used to test the data to verify that the data has not changed.

Cryptographic hash function:

A function that maps a bit of arbitrary string length to a fixed-bit string length. *TEC 91010:2023* Page **78** of **91** Approved hash functions satisfy the following properties:

- 1. One-way Finding any input that maps to any pre-specified output is computationally infeasible.
- 2. Collision resistant Finding two distinct inputs that map to the same output is computationally infeasible.

Cryptographic key:

A parameter used with a cryptographic algorithm determines its operation so that an entity with knowledge of the key can reproduce or reverse the process while an entity without knowledge of the key cannot. Examples include

- 1. The transformation of plaintext data into ciphertext data,
- 2. The transformation of ciphertext data into plaintext data,
- 3. The computation of a digital signature from data,
- 4. The verification of a digital signature,
- 5. The computation of a message authentication code (MAC) from data,
- 6. The verification of a MAC received with data,
- 7. The computation of a shared secret used to derive keying material.

Cryptographic primitive:

A low-level cryptographic algorithm is a fundamental building block for higher-level cryptographic algorithms. Cryptography is the discipline that embodies the principles, means, and methods for providing information security, including confidentiality, data integrity, source authentication, and non-repudiation.

Cryptoperiod:

When a specific key is authorised for use or in which the keys for a given system may remain in effect.

Data integrity:

A property whereby data has not been altered unauthorised since it was created, transmitted, or stored. Data integrity authentication: The process of determining the integrity of the data, also called integrity authentication or integrity verification.

Decryption:

The process of changing ciphertext into plaintext using a cryptographic algorithm and key.

Discrete Log Problem:

A mathematical problem is considered hard for a conventional computer to solve but is easily solved by a quantum computer. The problem requires an understanding of the concept of an algebraic group. Solve for k, where b^k=g and b and g are elements in the same algebraic group.

Digital signature:

The result of a cryptographic transformation of data that, when properly implemented, provides the services of NIST SP 800-175B

- 1. Source authentication,
- 2. Data integrity, and
- 3. Support for signer non-repudiation.

Digital Signature Algorithm (DSA):

A public key algorithm is used to generate and verify digital signatures.

Domain parameters:

The parameters used with a cryptographic algorithm are common to a domain of users.

Elliptic Curve Cryptography(ECC):

It is a type of public key cryptography; this acronym refers to a group of ciphers based on their security on the discrete logarithm problem over an elliptic curve cyclic group, i.e., a family of ciphers like ECDH, ECDSA and others.

Elliptic Curve Digital Signature Algorithm (ECDSA):

A digital signature algorithm that is an analogue of DSA using elliptic curves.

Encryption:

The process of changing plaintext into ciphertext using a cryptographic algorithm for security or privacy.

Entity:

An individual (person), organisation, device, or process. Ephemeral key pair A short-term key pair is used with a public key(asymmetric-key) algorithm that is generated when needed; the public key of a short key pair is not provided in a public key certificate, unlike static public keys, which are often included in a certificate.

Hash Function:

Used interchangeably with an algorithm in this document. Hash function See cryptographic hash function. Hash value results from applying a hash function to information, also called a message digest.

Identity authentication:

The process of assuring the identity of an entity interacting with a system; also see Source authentication.

Initialisation Vector (IV):

A vector is used in defining the starting point of a cryptographic process.

Integrity:

The property that Data has not been modified or deleted in an unauthorised and undetected manner.

Integrity authentication (integrity verification):

The process of determining the integrity of the data; is also called data integrity authentication.

Interoperability:

The ability of one entity to communicate with another entity. Key agreement A (pair-wise) key-establishment procedure where secret keying material is generated from information contributed by two participants so that no party can predetermine the value of the private keying material independently from the other party's contributions. Contrast with key-transport.

Key Confirmation:

A procedure assures one party that another possesses the same keying material and/or shared secret.

Key Derivation:

The process of keying material is derived from either a pre-shared key or a shared secret produced during a key-agreement scheme along with other information.

Key Establishment:

The procedure results in keying material that is shared among different entities.

Key Hierarchy:

A tree structure represents the relationship of different keys. In a key hierarchy, a node represents a key used to derive the keys the descendent nodes represent. A key can only have one precedent but may have multiple descendent nodes.

Keying material:

A cryptographic key and other parameters (e.g., IVs or domain parameters) are used with a cryptographic algorithm. When keying, the material is derived as specified in SP 800-56C4 and SP 800-108:5. Data is represented as a bit string such that any non-overlapping segments of the string with the required lengths can be used as secret keys, secret initialisation vectors, and other secret parameters.

Keying relationship, cryptographic:

The state exists between two entities, sharing at least one cryptographic Key.

Key Information:

Information related to a key includes the keying material and associated

metadata linking to that key.

Key Life Cycle:

A sequence of steps that a key undergoes from its reception by a key manager (KM) through its use in a cryptographic application and until deletion or preservation depending on the key management policy.

Key Management:

All activities performed on keys during their life cycle, starting from their reception from the quantum layer, storage, formatting, relay, synchronisation, authentication and supply to a cryptographic application and deletion or preservation, depending on the key management policy.

Key Manager (KM):

A functional module is located in a quantum key distribution (QKD) node to perform key management in the Key management layer.

Key Manager Link:

A communication link connecting key managers (KMs) to perform key management.

Key pair:

A public key and its corresponding private key; a key pair is used with a public key (asymmetric-key) algorithm

Key Relay: A method to share keys between arbitrary quantum key distribution (QKD) nodes via intermediate QKD node(s).

Key Symmetry: The key symmetry means that bit '0' and bit '1' probability detection should be nearly equal. NIST randomness test has to be performed on the raw key (bits detected by SPD) to validate the symmetry.

Key Supply: A function providing keys to cryptographic applications.

Key transport:

A key-establishment procedure whereby one party (the sender) selects a value for the secret keying material and then securely distributes that value to another party (the receiver). Contrast with a key agreement.

Key wrapping:

A method of cryptographically protecting the confidentiality and integrity of keys using a symmetric-key algorithm. Key-wrapping key A symmetric key provides confidentiality and integrity protection for other keys.

Merkle Tree:

A quantum-safe public key cryptography system based on a tree of message digests where each child leaf is computed using a cryptographic hash function that is keyed with a key derived from its parent.

Message Authentication Code (MAC):

A cryptographic checksum on data that uses an approved security function and a symmetric key to detect accidental and intentional modifications of data.

Message digest Metadata:

The information associated with a key describes its specific characteristics, constraints, acceptable uses, ownership, etc., sometimes called the key's attributes.

Mode of operation:

An algorithm that uses a block cipher algorithm as a cryptographic primitive to provide a cryptographic service, such as confidentiality or authentication.

Non-repudiation:

A service uses a digital signature that is used to support a determination of whether a given entity signed a message.

NP:

Class of computational decision problems for which any given yes-solution can be verified as a solution in polynomial time by a deterministic Turing machine (or solvable by a non-deterministic Turing machine in polynomial time).

NP-hard problem:

The problem X that we considered earlier should be as hard as every NP problem so that an easy solution for X will give an easy solution for every NP problem is called the NPhard problem.

Network Function Virtualisation NFV:

Technology that enables the creation of logically isolated network partitions over shared physical networks so that heterogeneous collections of multiple virtual networks can simultaneously coexist over the shared networks.

One-time pad:

An unconditionally secure encryption method, where plaintext is encrypted with a random secret key(or pad) of the same length as the message. The Private Key must be known by the sender and receiver and used only once.

Owner of a certificate:

The entity that is responsible for managing the certificate, including requesting, replacing, and revoking the certificate if and when required. The certificate owner is not necessarily the subject entity associated with the public key in the certificate (i.e., the key pair owner).

Owner of a key or key pair:

One or more entities are authorised to use a symmetric key or the private key of a key pair.

Perfect Forward Secrecy:

An attribute of a security protocol that means that temporary/ephemeral cryptographic keys are used in the protocol so that if an adversary breaks the keys and can listen to traffic in the session, they can only listen for the current session and need to break the keys again in any future secure session.

Plaintext:

Data that has not been encrypted; intelligible data that has meaning and can be understood without decryption.

Pre-Shared Key:

A secret key that has previously been established between the parties who are authorised to use it by means of some secure method (e.g., using a secure manual distribution process or automated key-establishment scheme).

Polynomial Time:

A term used by computer scientists to describe the amount of computing time required to solve a mathematical problem as the problem scales upwards in size. A polynomial time algorithm means that the algorithm solves a problem very fast.

Privacy:

The right of individuals to control or influence what information related to them may be collected and stored and by whom and to whom that information may be disclosed.

Private key:

A cryptographic key is used with a public key cryptographic algorithm uniquely associated with an entity and not made public. In an asymmetric (public) key cryptosystem, the Private key is associated with a public key. Depending on the algorithm, the private key may be used to: -

- i) Compute the corresponding public key,
- ii) Compute a digital signature that the corresponding public key may verify.
- iii) Decrypt data that was encrypted by the corresponding public key, or
- iv) Compute a shared secret during a key-agreement process.

Protocol:

A set of rules used by two or more communicating entities that describe the message order and data structures for information exchanged between the entities.

Public key:

A cryptographic key is used with a public key (asymmetric key) algorithm uniquely associated with an entity that may be made public. In an asymmetric (public) key cryptosystem, the public key is associated with a private key. Anyone may know the public key and, depending on the algorithm may be used to -

- 1. Verify a digital signature signed by the corresponding private key.
- 2. Encrypt data that can be decrypted by the corresponding private key, or
- 3. Compute a shared secret during a key-agreement process.

Public key (Asymmetric-key) Cryptographic Algorithm:

A cryptographic algorithm that uses two related keys: a public key and a private key. The two keys have the property that determining the private key from the public key is computationally infeasible.

Public Key Infrastructure (PKI):

A framework is established to issue, maintain, and revoke public key certificates.

Quantum Channel: Communication channel for transmitting quantum signals.

Quantum-Safe Algorithm :

A step-by-step procedure that could run on a working quantum computer.

Quantum computing:

A computing device based on Qubits that can run the quantum computer.

Random Bit Generator (RBG):

A device or algorithm that outputs a sequence of bits that appears to be statistically independent and unbiased.

Relying party:

An entity that relies on the Certificate and the CA that issued the Certificate to verify the identity of the certificate owner, the validity of the public key, associated algorithms, and any relevant parameters in the Certificate, as well as the owner's possession of the corresponding private key.

RFC:

Request For Comment, which is a type of standard that the Internet Engineering Task Force publishes.

RSA:

A public key algorithm is used for key establishment and the generation and verification of digital signatures.

Scheme:

A set of unambiguously specified transformations that provide a (cryptographic) service (e.g., key establishment) when properly implemented and maintained. A scheme is a higher-level construct than a primitive and a lower-level construct than a protocol.

Secret key:

A single cryptographic key is used with a symmetric (secret key) cryptographic algorithm and is not made public (i.e., the key is kept secret). A private key is also called a symmetric key.

Sensitive (information):

Sensitive but unclassified information.

Security Association:

An instance of an encipherment key that temporarily protects network communications in an IPSec based VPN. An SA is a setup using the IKE protocol.

Security function: Cryptographic algorithms, together with modes of operation (if appropriate); for example, block cipher algorithms, digital signature algorithms, asymmetric key-establishment algorithms, message authentication codes, hash functions, or random bit generators.

Security strength:

A number is associated with the amount of work (i.e., the number of operations) required to break a cryptographic algorithm or system.

Sender/ Receiver:

This document defines the sender/transmitter and the receiver.

Shor's algorithm:

A method intended to run on a quantum computer that solves an instance of the Integer Factorization Problem and Discrete Log Problem in polynomial.

Signature Generation:

A digital signature algorithm and a private key generate a digital signature on data.

Signature Verification:

Using a digital signature and a public key to verify a digital signature on data.

Source Authentication:

The process of assuring the source of information is sometimes called data-origin authentication. Compare with Identity authentication.

SSL:

Secure Sockets Layer is an internet RFC that is a predecessor

Static Key Pair:

A long-term key pair for which the public key is often provided in a public key certificate.

Symmetric Key:

A single cryptographic key used with a symmetric (secret key) algorithm is uniquely associated with one or more entities and is not made public (i.e., the key is kept secret); a symmetric key is often called a secret key.

Symmetric-Key (Secret-Key) Algorithm:

A cryptographic algorithm that uses the same secret key for an operation and its complement (e.g., encryption and decryption).

TLS :

Transport Layer Security is an Internet RFC specifying a security protocol to encrypt and authenticate network communications for software applications. TLS v1.0 is the subsequent version of SSL v3.

Trusted Channel:

A channel where the endpoints are known and data integrity is protected in transit. Data privacy may be protected in transit depending on the communications protocol used. Examples include Transport Layer Security (TLS), IP security (IPSec), and secure physical connection.

User Network:

A network in which cryptographic applications consume keys supplied by a quantum key distribution (QKD) network or classical Key distribution network.

ACRONYMS

For this document the following	g abbreviations apply:
AC	Alternating Current
ACL	Access Control List
AEAD	Authenticated Encryption with Associated Data
AES	Advanced Encryption Standard
AH	Authentication Header
ANS	American National Standard
ANSI	American National Standard Institute
CA	Certificate Authority
CBC	Cipher-Block Chaining
CFB	Cipher FeedBack mode
CLI	Command Line Interface
СМАС	Cipher-based Message Authentication Code
CNG	Cryptography API: Next Generation
CSR	Certificate Signing Requests
CTR	Counter
DC	Direct Current
DH	Diffie-Hellmen
DHKE	Diffie-Hellman Key Exchange
DSA	Digital Signature Algorithm
ECB	Electronic Code Book
ECC	Elliptic Curve Cryptography
ECDH	Elliptic Curve Diffie-Hellman
ECDSA	Elliptic Curve Digital Signature Algorithm
EMI	electromagnetic Interference
EMC	Electromagnetic compatibility
ESP	Encapsulating Security Payload
FPGA	Field Programmable Gate Array
FTP	File Transfer Protocol
GCM	Galois/Counter Mode
HFE	Hidden Field Equations

НМАС	Hash-based Message Authentication Code
HTTPS	Hypertext Transfer Protocol Secure
IEC	International Electrotechnical Commission
IP	Internet Protocol
IPsec	IP security
IPv4	Internet Protocol version 4
IPv6	Internet Protocol version 6
IKE	Internet Key Exchange
IKEv2	Internet Key Exchange version 2
ITU	International Telecommunication Union
IV	Initialisation Vector
КМАС	Keccak Message Authentication Code
KME	Key Management Entity
KMF	Key Management Framework
KMIE	Key Management Interoperability Protocol
LWE	Learning With Error
MAC	Message Authentication Code
NIST	National Institute of Standards and Technology
OASIS	Organization for the Advancement of Structured
	Information Standards
OFB	Output FeedBack mode
OID	Object Identifier
OSI	Open Systems Interconnection
PFS	Perfect Forward Secrecy
PKI	Public Key Infrastructure
PQC	Post-Quantum Cryptography
PRNG	Pseudo Random Number Generator
QKD	Quantum Key Distribution
QKDE	Quantum Key Distribution Entity
RADIUS	Remote Authentication Dial-In User Service
REST	REpresentational State Transfer
RH	Relative Humidity
RFC	Request For Comment

RSA	Rivest, Shamir and Adleman
SA	Security Associations
SAE	Secure Application Entity
SIS	Short Integer Solution
SFP	Small Form-factor Pluggable
S/MIME	Secure/Multipurpose Internet Mail Extention
SNMP	Simple Network Management Protocol
SP	Special Publication
SSH	Secure Shell
SSL	Secure Sockets Layer
SVP	Shortest Vector Problem
TLS	Transport Layer Security
TRNG	True Random Number Generator
TACAS	Terminal Access Controller Access Control System
USB	Universal Serial Bus
VLAN	Virtual Local Area Network
VPN	Virtual Private Network
WAN	Wide Area Network
XMSS	eXtended Merkle Signature Scheme

=====End of the document ======