Indian Telecom Security Assurance Requirements (ITSAR) भारतीय दूरसंचार सुरक्षा आश्वासन आवश्यकताएँ (भा.दू.सु.आ.आ.) # **Vehicle Tracking Device** **Draft for comments** ITSAR Number: ITSAR30907YYMM ITSAR Name: NCCS/ITSAR/Access Equipment/IoT End Devices/Vehicle Tracking Device Date of Release: DD.MM.YYYY Version: 1.0.0 Date of Enforcement: © रा.सं.सु.कें., २०२४ © NCCS, 2024 MTCTE के तहत जारी: Issued under MTCTE by: राष्ट्रीय संचार सुरक्षा केंद्र (रा.सं.सु.कें.) दूरसंचार विभाग, संचार मंत्रालय भारत सरकार सिटी दूरभाष केंद्र, एसआर नगर, बैंगलोर-५६००२७, भारत National Centre for Communication Security (NCCS) Department of Telecommunications Ministry of Communications Government of India City Telephone Exchange, SR Nagar, Bangalore-560027, India ## **About NCCS** National Centre for Communication Security (NCCS), with headquarters at Bengaluru was set up in 2018 with the objective to establish and operationalize a framework of security testing and certification within the country. NCCS is mandated to prepare Telecom security requirements/standards called Indian Telecom Security Assurance Requirements (ITSAR) that addresses the country specific security needs in telecommunication landscape and notify the same. ITSAR No: ITSAR30907YYMM Page 1 of 75 # **Document History** | Title | ITSAR No. | Version | Date of | Remark | |------------------|------------------|---------------------------------|--------------------------------------|--| | | | | Release | | | Vehicle Tracking | ITSAR30907YYMM | 1.0.0. | DD.MM.YYYY | First release | | Device | Vehicle Tracking | Vehicle Tracking ITSAR30907YYMM | Vehicle TrackingITSAR30907YYMM1.0.0. | Vehicle TrackingITSAR30907YYMM1.0.0.DD.MM.YYYY | ITSAR No: ITSAR30907YYMM Page 2 of 75 # **Table of Contents** | A) Outline | 11 | |---|----| | B) Scope | 12 | | C) Conventions | 12 | | Chapter 1 – Overview | 13 | | Chapter 2 – Common Security Requirements | 18 | | Section1: Authentication | | | A. Level-1 Security requirements: | | | 2.1.A.1 Default passwords and user names | | | 2.1.A.2 Hardcoded authentication credentials | | | 2.1.A.3 Unique passwords | | | 2.1.A.4 Multiple user accounts | 18 | | B. Level-2 Security Requirements: | 19 | | 2.1.B.1 Authentication credentials | | | 2.1.B.2 Username and password reset | 19 | | 2.1.B.3 Logical access | | | 2.1.B.4 Pairing and connecting with other devices | | | 2.1.B.5 Provisioned credentials | | | 2.1.B.6 Changing authentication value | | | 2.1.B.7 New and common passwords | | | 2.1.B.8 Changing authentication password | | | 2.1.B.9 Display of user credentials | | | C. Level-3 Security Requirements: | | | 2.1.C.1 Multi-factor authentication | | | 2.1.C.2 Trusted Computing Base (TCB) | | | 2.1.C.3 Brute force Attacks | | | 2.1.C.4 Locking of account | | | D. Level-4 Security Requirements: | | | Nil | | | Section 2: Identity Management | | | A. Level-1 Security Requirements: | | | 2.2.A.1 Physical and logical identifiers | | | B. Level-2 Security Requirements: | | | 2.2.B.1 Hardcoded unique identity | | | 2.2.B.2 Root of Trust | | | 2.2.B.3 Consistent authentication security | | | C. Level-3 Security Requirement: | | | Nil | | | D. Level-4 Security Requirements: | | | Nil | | | Section 3: Authorization and access controls | | | A. Level-1 Security Requirements: | | | 2.3.A.1 Common authorization framework | | | 2.3.A.2 Failure of access controls | | | 2.3.A.3 Directory browsing | | | 2.3.A.4 Manipulation of user and data attributes | | | 2.3.A.5 Access control privileges | | | | | | 2 | .3.A.6 | Protection against spoofing | 24 | |-------|-----------------|---|----| | 2 | .3.A.7 | Access to sensitive information | 24 | | 2 | .3.A.8 | Controlled user account access | 24 | | 2 | .3.A.9 | Access to debug capabilities | 24 | | 2 | .3.A.10 | Recording of data | 25 | | 2 | .3.A.11 | Reset of authorized information | 25 | | 2 | .3.A.12 | Access control during initial connection | 25 | | B. Le | evel-2 S | Security Requirements: | 25 | | | Iil | | | | | | Security Requirements: | | | 2 | .3.C.1 | Trusted service layer | 25 | | | | Administration interfaces | | | | | Security Requirements: | | | | Iil | | | | | | urely storing sensitive information | | | | | Security Requirements: | | | | Iil | | | | | | Security Requirements: | | | | | Sensitive security parameters | | | | | Hardcoded security parameters | | | | | Secure storing of passwords | | | | | Salting and hashing of passwords | | | | | bcrypt | | | | | Security Requirements: | | | | | Storing of sensitive data | | | | | Personal Identifiable Information (PII) | | | | | PBKDF2 | | | | | Secret salt value | | | | | Tamper-resistant storage of sensitive data | | | | | Trusted Computing Base (TCB) | | | | | Trust Anchor | | | | | Security Requirements: | | | | | Cryptographic Root of Trust | | | | | a Protection
Security Requirements: | | | | | , <u>,</u> | | | | | Data in browser storage | | | _ | | Personally Identifiable Information collection | | | | | Security Requirements: | | | | | Sensitive information in memory | | | | | Security Requirements: | | | | ever-s s
Iil | security Requirements: | | | | | Security Requirements: | | | | ever-4 s
Iil | security Requirements: | | | | | ure input and output handling | | | | | Security Requirements: | | | | ever-1 s
Iil | security Requirements: | | | | | Security Requirements: | | | | | Validation of input data and transferred data | | | 4 | .0.0.1 | ranadaton or impat add and dansiented addississississississississississississis | | | | Validation of inputs and outputs | | |--------------------|---|----| | | Validation checks | | | 2.6.B.4 | Warning regarding potentially untrusted content | 31 | | C. Level-3 | Security Requirements: | | | 2.6.C.1 | HTTPS parameter pollution attacks | | | 2.6.C.2 | 1 0 | | | 2.6.C.3 | , | | | D. Level-4 | Security Requirements: | | | Nil | | | | | ommunicate Securely | | | | Security Requirements: | | | 2.7.A.1 | 71 0 1 0 1 | | | 2.7.A.2 | | | | 2.7.A.3 | | | | 2.7.A.4 | | | | 2.7.A.5 | | | | 2.7.A.6 | | | | 2.7.A.7 | | | | 2.7.A.8 | | | | | Communication of personal data between device and web interface | | | | 0 Sensitive data through HTTP message | | | | Security Requirements: | | | | Authentication of data received from other devices | | | 2.7.B.2 | 1 | | | | Security Requirements: | | | 2.7.C.1 | | | | 2.7.C.2 | | | | 2.7.C.3
2.7.C.4 | | | | 2.7.C.4
2.7.C.5 | | | | 2.7.C.5
2.7.C.6 | y | | | 2.7.C.0
2.7.C.7 | | | | 2.7.C.7
2.7.C.8 | <u> </u> | | | | Security Requirements: | | | Nil | security Requirements | | | | ryptography | | | | Security Requirements: | | | 2.8.A.1 | • • | | | 2.8.A.2 | 7. 9. | | | _ | Cryptographic key chain | | | | Secure sources of randomness | | | | Security Requirements: | | | | Confidentiality, authenticity, and/or integrity of data | | | 2.8.B.2 | | | | 2.8.B.3 | | | | 2.8.B.4 | | | | | Security Requirements: | | | Nil | | | | D. Level-4 | Security Requirements: | | | Nil | 39 | |--|----| | Section 9: Minimize Exposed Attack Surfaces | 39 | | A. Level-1 Security Requirements: | 39 | | 2.9.A.1 Unused communication ports | | | B. Level-2 Security Requirements: | | | 2.9.B.1 Physical decapsulation, side channel and glitching attacks | | | 2.9.B.2 Debugging and Testing Technologies | | | 2.9.B.3 Unused network and logical interfaces | | | 2.9.B.4 Software services | | | 2.9.B.5 Debug interface | | | C. Level-3 Security Requirements: | | | Nil | | | D. Level-4 Security Requirements: | | | Nil | | | Section 10: Vulnerability Management | | | A. Level-1 Security Requirements: | | | 2.10.A.1 Vulnerability management related policies | | | 2.10.A.1 Vulnerability management related policies | | | | | | 2.10.A.3 Third party and open-source software | | | B. Level-2 Security Requirements: | | | 2.10.B.1 Abnormal number of requests | | | C. Level-3 Security Requirements: | | | 2.10.C.1 Review of device OS/source code | | | D. Level-4 Security Requirements: | | | 2.10.D.1 Penetration testing strategy | | | Section 11: Incident Management | | | A. Level-1 Security Requirements: | | | 2.11.A.1 Operational and security events | 43 | | B. Level-2 Security Requirements: | | | 2.11.A.2 Detection of potential incidents | | | C. Level-3 Security Requirements: | | | Nil | | | D. Level-4 Security Requirements: | 44 | | Nil | | | Section 12: Keep Software Updated | 44 | | A. Level-1 Security Requirements: | 44 | | 2.12.A.1 Remote update | 44 | | 2.12.A.2 Secure update | 44 | | 2.12.A.3 Authenticate to update server | 44 | | 2.12.A.4 Authenticity of the update | 45 | | 2.12.A.5 Automatic updates and/or update notifications | 45 | | 2.12.A.6 Checking for security updates | | | 2.12.A.7 Notification during software update | | | 2.12.A.8 Over-The-Air (OTA) update | | | 2.12.A.9 Failure of update | | | B. Level-2 Security Requirements: | | | 2.12.B.1 Authenticity and integrity of software updates | | | C. Level-3 Security Requirements: | | | 2.12.C.1 Firmware-update through peer | | | | | | D. Level-4 Security Requirements: | 47 | |--|----| | Nil | 47 | | Section 13: Ensure Software Integrity | 47 | | A. Level-1 Security Requirements: | 47 | | 2.13.A.1 Back doors | 47 | | 2.13.A.2 User interface | 47 | | 2.13.A.3 Removal of unnecessary packages | 48 | | B. Level-2 Security Requirements: | 48 | | 2.13.B.1 Persistent filesystem storage | 48 | | C. Level-3 Security Requirements: | 48 | | 2.13.C.1 Secure boot mechanisms | | | 2.13.C.2 Unnecessary Services Removal | | | 2.13.C.3 Controls against mobile code | | | D. Level-4 Security Requirements: | 49 | | Nil | | | Section 14: Firmware and
Bootloader Security | | | A. Level-1 Security Requirements: | | | 2.14.A.1 Configuration of firmware | | | 2.14.A.2 Design of device firmware | | | B. Level-2 Security Requirements: | 50 | | Nil | | | C. Level-3 Security Requirements: | | | 2.14.C.1 Secure boot process | | | 2.14.C.2 Authenticity of first stage boot loader | | | 2.14.C.3 Default/standard boot loader | | | 2.14.C.4 Authenticity of boot loader stages | | | 2.14.C.5 Executable image of first-stage boot loader | | | 2.14.C.6 Sensitive information in boot loader stages | | | 2.14.C.7 Code loading of boot loader | | | 2.14.C.8 Communication interfaces | | | D. Level-4 Security Requirements: | | | Nil | | | Section 15: Secured Execution Platform | | | A. Level-1 Security Requirements: | | | 2.15.B.1 Non-volatile memory's contents | | | B. Level-2 Security Requirements: | | | 2.15.B.2 Minimum Viable execution Platform | | | C. Level-3 Security Requirements: | | | Nil | | | D. Level-4 Security Requirements: | | | Nil | | | Section 16: Collection of Logs | | | A. Level-1 Security Requirements: | | | 2.16.A.1 Security logs | | | 2.16.A.2 Contents of logs | | | 2.16.A.3 Device synchronization | | | 2.16.A.4 Sensitive information in logs | | | 2.16.A.5 Online collection of logs | | | B. Level-2 Security Requirements: | 54 | | Nil | | 54 | |-------------------|---|----| | C. Level-3 | Security Requirements: | 54 | | Nil | | 54 | | D. Level-4 | Security Requirements: | 54 | | Nil | | 54 | | Chapter 3 – Spe | cific Security Requirements | 55 | | | uetooth | | | A. Level-1 | Security Requirements: | | | 3.1.A.1 | PIN/ Pass-key code | | | 3.1.A.2 | Encryption keys | | | 3.1.A.3 | Pairing methods | | | 3.1.A.4 | Bluetooth Security Mode and Level | | | | Encryption of Bluetooth connections | | | | Security Requirements: | | | | Pairing and discovery | | | | Security Requirements: | | | Nil | | | | | Security Requirements: | | | Nil | | | | | gbee | | | | Security Requirements: | | | | Version | | | 3.2.A.2 | Joining Zigbee network | | | 3.2.A.3 | Pre-configured global link key | | | 3.2.A.4 | Activation of pairing mode | | | 3.2.A.5 | Network key generation | | | 3.2.A.6 | Network key regeneration | | | | Security Requirements: | | | | Validation of Paired Devices | | | | Security Requirements: | | | Nil
D. Lovel 4 | Security Requirements: | | | D. Level-4
Nil | Security Requirements: | | | | i-Fi | | | | Security Requirements: | | | | Disabling Wi-FI connectivity | | | 3.3.A.2 | Protection of Wi-Fi communications | | | | Use of Wi-Fi Protected Setup (WPS) | | | | Security Requirements: | | | | SSIDs | | | | Security Requirements: | | | Nil | | | | = -== | Security Requirements: | | | Nil | | | | | Е | | | | Security Requirements: | | | 3.4.A.1 | Confidentiality on the Air Interface | | | 3.4.A.2 | Ciphering Indicator | | | 3.4.A.3 | SIM/USIM/eSIM PIN Code | | | | , | | | 3.4.A.4 Temporary Identities | 60 | |---|----| | B. Level-2 Security Requirements: | 61 | | Nil | 61 | | C. Level-3 Security Requirements: | 61 | | Nil | 61 | | D. Level-4 Security Requirements: | | | Nil | | | Section 5: LoRaWAN | | | A. Level-1 Security Requirements: | | | 3.5.A.1 Version | | | 3.5.A.2 Root keys | | | B. Level-2 Security Requirements: | | | 3.5.B.1 Replay attacks | | | C. Level-3 Security Requirements: | | | 3.5.C.1 Communication with LoRaWAN gateway | | | D. Level-4 Security Requirements: | | | Nil | | | Section 6: Other Security Requirements | | | A. Level-1 Security Requirements: | | | 3.6.B.1 Private Access Point Name | | | B. Level-2 Security Requirements: | | | 3.6.B.2 Sensitive data protection | | | C. Level-3 Security Requirements: | | | Nil | | | D. Level-4 Security Requirements: | | | Nil | | | Section 7: Messages and Alerts from the devices | | | A. Level-1 Security Requirements: | | | 3.7.A.1 List of alerts | | | B. Level-2 Security Requirements: | | | Nil | | | C. Level-3 Security Requirements: | | | Nil | | | D. Level-4 Security Requirements: | | | Nil | | | Section 8: Other Security Requirements | | | A. Level-1 Security Requirements: | | | 3.8.A.1 OTA updates | | | 3.8.A.2 Restoration on loss of power | | | 3.8.A.3 System health parameters | | | 3.8.A.4 IP protocols | | | 3.8.A.5 Factory reset | | | B. Level-2 Security Requirements: | | | C. Level-3 Security Requirements: | | | 3.10.C.1 Return to a secure state | | | D. Level-4 Security Requirements: | | | Nil | | | Annexure-I | | | Annexure-II | =0 | | Annexure-III | 7 | 7 / | |--------------|---|-----| | Annexure-IV | 7 | 7 0 | # A) Outline The objective of this document is to present comprehensive, country-specific security requirements for the Vehicle Tracking Device. A Vehicle Tracking Device uses satellite-based location technology to determine and record the precise location of a vehicle at regular intervals. The location data so determined can be stored within the device, and/or can be transmitted to the backend control centre using a wireless communication modem built in the device. There are various international standardisation bodies/associations working on the security aspects, relevant to the IoT devices security and the specifications produced by these various regional/ international standardisation bodies/ organisations/associations like ISO, ETSI, NIST, IoTSF, Agelight, GSMA, ENISA and OWASP along with the country-specific security requirements from TEC ER, BIS, AIS are the basis for this document. This document commences with a brief description of vehicle tracking device architecture, and then proceeds to address the common and device specific security requirements of vehicle tracking device. The common security requirements cover the software part in general and the specific security requirements focus mainly on the communication part of the vehicle tracking device. ITSAR No: ITSAR30907YYMM Page 11 of 75 # B) Scope This document targets the security requirements of the vehicle tracking device for consumer use. As per BIS IS 16833: 2018, vehicle tracking devices are classified into following three use cases. - a) Automotive Tracking Device (ATD) with an integrated emergency system. - b) Automotive Tracking Device (ATD) with an integrated emergency system and fare metre. - c) CCTV system with in-built tracking system and integrated emergency system. This document applies to Automotive Tracking Device (ATD) intended to be used in Private transport vehicles. # **C)** Conventions - 1. Must or shall or required denotes the absolute requirement of a particular clause of ITSAR. - 2. Must not or shall not denote absolute prohibition of a particular clause of ITSAR. - 3. Should or recommended denotes that the particular clause of ITSAR may be ignored under justifiable circumstances but after careful examination of its implications. - 4. Should not or not Recommended denotes the opposite meaning of (3) above. ITSAR No: ITSAR30907YYMM Page 12 of 75 # **Chapter 1 - Overview** #### 1.1 Introduction: Vehicle tracking Device is an emerging technology and is very much in use for public transport. With increasing theft rate, vehicle security has become one of the biggest consumer concerns and therefore use of vehicle tracking devices for consumer vehicles is encouraged. A consumer vehicle tracking device uses Global Navigation Satellite System (GNSS) and provides real-time information about a vehicle's location all the time with digital maps. Automotive Tracking Device (ATD) is a type of vehicle tracking device which provides the position, speed, direction of travel and time to a network communication centre. Also, there can be an embedded emergency button which when pressed sends an alert to the endpoint device or to the designated authority. Most of the vehicle tracking devices are both active and passive since they can track in realtime as well as store the tracking information for some period into the device which can be downloaded for future analysis. 1.2 explains how a vehicle tracking device works in real-time. #### 1.2 Scenario: Following is a scenario for a typical vehicle tracking for private use presuming that a private vehicle has been deployed with a vehicle tracking device. The vehicle owner wishes to track the vehicle, that is, wants to know the location, fuel level, speed of the vehicle etc. The tracking device gathers all such information and uses Global Positioning System (GPS) satellites to know the location of the vehicle and transmits the data using wireless or cellular network. Through the network provider the data travels to the server which processes the data and allows the owner to access the tracking details. [Ref: ETSI TR 102 898 V 1.1.1] **1.3 Vehicle Tracking Device architecture:** VTD architecture can be divided into two parts: #### **Endpoint Ecosystem:** - 1. A simple Graphic User Interface (GUI) that allows a user to: - Log in with a username and password - Disable tracking - Enable tracking ITSAR No: ITSAR30907YYMM Page 13 of 75 - Identify and visualise current location - 2. A cellular module for connecting to back-end services - 3. A SIM card for the cellular module - 4. A Lithium-Polymer battery for back-up power - 5. A Central Processing Unit (CPU) - 6. An embedded application in Non-Volatile RAM - 7. RAM - 8. EEPROM #### **Service Ecosystem:** - 1. Cellular Data connectivity - 2. Secure Private APN - 3. Service Access Point - 4. Cellular Modem OTA management service - 5. SIM Card OTA management service This document briefly covers the security requirements for the endpoint ecosystem only. The security requirements for the service ecosystem are beyond the scope of this document. #### **Classification of IoT devices based on Security Features** Making the whole diversity of IoT-class applications adhere to a common security objective is a subjective endeavour. Even within vertical sectors such as consumer and enterprise, the security measures and
strength of controls will vary depending on the actual use case. Though international standards exist for IoT security viz., ETSI 303 645, IoT SF security framework for IoT, there is no harmonization of these standards. In an endeavour to classify IoT devices based on Security features, TEC (Telecom Engineering Centre) has mapped the device classifications from various standard bodies in its technical report- "Security by Design for IoT Device Manufacturers". In the above report, TEC has also proposed "Classification for IoT devices in India". This classification has IoT devices varying from Level-0 to Level-4 covering the CIA (Confidentiality, Integrity, and Availability) triad requirements along with authentication and authorization covering baseline security requirements and principles of security by design. The proposed classification has Level-0 meeting no security requirements, Level-1 meeting the baseline requirements, Level-2 adhering to international cybersecurity standards for IoT, Level-3 meeting the principles of security by design and having no known software vulnerabilities and Level-4 device being resistant to cyber security attacks by undergoing penetration testing. To develop Indian Telecom Security Assurance Requirements (ITSARs) for the gamut of Consumer IoT devices, National Centre for Communication Security (NCCS) adopts the ITSAR No: ITSAR30907YYMM Page 14 of 75 cybersecurity device classification proposed in the "Security by Design for IoT Device Manufacturers" report of TEC. The TEC report also explains the five levels of IoT devices as below. **Level 0:** Such devices are very constrained devices with very low processing power, no data encryption and message encryption. Such type of devices may not enable a secure communication and should be allowed to work through such gateways which can add the required measure of security. Without the security augmentation by a Gateway, such type of devices should not be permitted for use in mission critical infrastructure. It is required that the Gateways used to connect such devices will follow the security assurance at Level 2 / Level 3. **Level-1:** Devices of this level must use a protocol stack specifically designed for IoT devices with constraints, such as Constrained Application Protocol (CoAP). Device examples in this category can include environmental sensors. Devices in this category should meet the baseline requirements of ETSI EN 303 645 i.e. no default password, ensuring the availability of security updates and implementing means to manage vulnerability reporting. **Level-2:** Security requirement of Level-1 and adherence to international standards (secure identity, software asset security etc.). **Level-3:** Absence of Known Common Software Vulnerabilities. The devices must meet the Security assurance requirements of Level-2 and also the software used in the connected device must be evaluated by a test laboratory using automated binary analysers to ensure that there is no known critical software weakness, vulnerabilities, or malware. **Level-4:** The device should perform well against the penetration tests by approved third party test labs, and fulfil Level-3 requirements. The IoT device undergoes penetration testing by a test laboratory to provide a basic level of resistance against common cybersecurity attacks. ITSAR No: ITSAR30907YYMM Page 15 of 75 | Proposal for Device Classification | | | | | | | |---|---|---------|---------|---------|---------|---------| | Security Features | Security Requirements | Level-0 | Level-1 | Level-2 | Level-3 | Level-4 | | | Message Encryption | X | √ | √ | √ | √ | | | Attack Protection | Х | X | 4 | √ | √ | | Confidentiality | Data Encryption | Х | √ | 4 | √ | √ | | Confidentiality | Tamper Resistance | Х | X | 4 | √ | √ | | | Security Assessment Certificates | Х | X | 4 | √ | √ | | | Device ID Management (Physical/ Logical) | 4 | √ | 4 | √ | √ | | | Data Integrity | Х | X | 4 | 4 | √ | | Integrity | Platform Integrity | X | X | 4 | √ | √ | | | Secure Booting and Integrity Test / Self Test | X | X | X | √ | √ | | | Logging | √ | √ | 4 | √ | √ | | | External Attack Prevention & Response | Х | X | X | √ | √ | | | Secure Monitoring | Х | X | X | √ | √ | | Availability | Secure Firmware Update & Patch Update | Х | √ | 4 | √ | √ | | | Software Assets Protection & Response | X | X | √ | √ | √ | | | Vulnerability Management & Response | X | √ | 4 | √ | √ | | | Security Policy Update & Response | X | X | X | √ | √ | | | Biometrics | Х | X | X | X | √ | | | User Authentication | Х | √ | 4 | √ | √ | | Authentication/ | Data Authentication | Х | X | 4 | √ | √ | | Authorization | Password Management | Х | √ | 4 | √ | √ | | | Access Control | √ | √ | √ | √ | √ | | | Device ID Verification | Х | X | √ | √ | √ | | s | ecurity Assement and standard | Level-0 | Level-1 | Level-2 | Level-3 | Level-4 | | Meet Baseline Secu | rity Requirement | | | | | | | Adherence to cyber | security based on International Standards | | | | | | | Adherence to the principles of Security by Design, and absence of known common software vulnerabilities | | | | | | | | Resistance against common cyber-attack and undergo for penetration testing | | | | | | | Proposed levels for IoT devices [Ref: Table 7 Proposed levels for IoT devices from "Security by Design for IoT Device Manufacturers" published by TEC] Level '0' type of devices may not enable secure communication and they do not meet baseline security requirements. They can be allowed to work through only gateways which can add the required measure of security. For ITSAR purpose, the level '0' classification is not considered as these devices do not meet baseline security requirements and hence, it is not possible to carry out security certification at Level '0'. #### **Classification of Security Requirements:** In order to apply an appropriate level of security assurance to an IoT device, This ITSAR has four levels of security requirements classified based on the classification of IoT devices proposed in "Security by Design for IoT Device Manufacturers" report of TEC. The security requirements to be met by the IoT device under each level are explained below. ## **Level 1: Baseline Security Requirements** The level 1 device shall meet the requirement of no default password, ensuring the availability of security updates and implementing means to manage vulnerability reporting. It also shall meet the basic security requirements such as message encryption, data encryption, device ID management (Physical/Logical), logging availability, secure firmware update and patch update, vulnerability management and response, user authentication, password management and access control mechanisms. ## Level 2: Adherence to Cybersecurity based on International Standards In addition to fulfilling Level 1 requirements, the level 2 device shall have integrated features to provide adherence to cybersecurity such as attack protection, tamper resistance, security assessment certificates, data integrity, platform integrity, software assets protection and response, data authentication and device ID verification. # Level 3: Adherence to the Principles of Security-by-Design, and Absence of Known Common Software Vulnerabilities In addition to fulfilling Level 2 requirements, the level 3 device shall have adherence to the principles of Security-by Design and absence of known common software vulnerabilities by using features like secure booting and integrity test / self-test, external attack prevention and response, secure monitoring and secure policy update and response. # Level 4: Resistance against Common Cyber-Attacks and undergo for penetration testing In addition to fulfilling Level 3 requirements, the level 4 device shall have resistance against common cyber-attacks, it undergoes penetration testing and incorporates the usage of biometric authentication. #### **Minimum level of Security Certification** For the Vehicle Tracking Device the *minimum-security certification required shall be at least Level 3 and above*. In other words, vehicle tracking devices to get security certified as per this ITSAR, the minimum-security requirements to be met are Level 3 and above. ITSAR No: ITSAR30907YYMM Page 17 of 75 # **Chapter 2 - Common Security Requirements** #### **Section1: Authentication** ## A. Level-1 Security requirements: #### 2.1.A.1 Default passwords and user names #### Requirement: - a) The device shall enforce the factory-issued/OEM login accounts and factory-default usernames to be disabled or erased or renamed when installed or commissioned. - b) The device shall enforce all the factory default user login passwords altered when installed or commissioned. Weak, common, null, or blank passwords shall not be allowed. [Ref: a) ENISA Baseline security recommendations for IoT November 2017 GP-TM-22, b) IoT SF IoT Security assurance framework Release 3.0 November 2021 2.4.8.12 and 2.4.8.13] #### 2.1.A.2 Hardcoded authentication credentials #### Requirement: The manufacturer shall submit an undertaking that authentication credentials for users, devices, or services are not hardcoded in firmware or applications. #### [Ref: OWASP ISP 2.1.9] #### 2.1.A.3 Unique passwords #### Requirement: Where passwords are used and, in any state, all consumer IoT device passwords shall be unique per device or defined by the user. If password-less authentication is used, the same principles of uniqueness apply. [Ref: ETSI EN 303 645 V2.1.0 (2020-04) Provision 5.1-1, IoT SF IoT Security assurance framework Release 3.0 November 2021 2.4.8.3] ## 2.1.A.4 Multiple user accounts ITSAR No: ITSAR30907YYMM Page 18 of 75 #### Requirement: Multiple user accounts with varied levels of control shall be created. [Ref: ETSI EN 303 645 V2.1.0 (2020-04) Note] ## **B.** Level-2 Security Requirements: ####
2.1.B.1 Authentication credentials #### Requirement: Authentication credentials shall be salted, hashed, and/or encrypted. Authentication credentials, including but not limited to user passwords, shall be salted, and hashed. Applies to all stored credentials to help prevent unauthorized access and brute force attacks. [Ref: ENISA Baseline security recommendations for IoT November 2017, GP-TM-24] #### 2.1.B.2 Username and password reset #### Requirement: Manufacturer shall provide generally accepted username and password reset mechanisms using multi-factor verification and authentication and shall provide notification of password and/or user ID reset or changes utilizing secure authentication and /or out-of-band notice(s). [Ref: Agelight IoT Safety Architecture & Risk Toolkit v4.0 15 and 17] #### 2.1.B.3 Logical access #### Requirement: The device shall authenticate each user and device attempting to logically access it. [Ref: NIST 8228 Expectation 10] #### 2.1.B.4 Pairing and connecting with other devices #### Requirement: Devices shall provide notice and/or request user confirmation when pairing, onboarding, and/or connecting with other devices, platforms, or services. [Ref: Agelight IoT Safety Architecture & Risk Toolkit v4.0 19] #### 2.1.B.5 Provisioned credentials ITSAR No: ITSAR30907YYMM Page 19 of 75 #### Requirement: Provisioned credentials such as username for device authentication shall be unique per device. [Ref: OWASP ISVS 2.1.10] ## 2.1.B.6 Changing authentication value #### Requirement: Where a user can authenticate against a device, the device shall provide the user or an administrator with a simple mechanism to change the authentication value used. [Ref: ETSI EN 303 645 V2.1.0 (2020-04) Provision 5.1-4] ## 2.1.B.7 New and common passwords #### Requirement: The device shall not allow new and common passwords containing the user account name with which the user account is associated. [Ref: IoT SF IoT Security assurance framework Release 3.0 November 2021 2.4.8.5] ## 2.1.B.8 Changing authentication password #### Requirement: User authentication password change mechanism shall ask for the user's current password. [Ref: OWASP ISVS 2.1.6] ## 2.1.B.9 Display of user credentials #### Requirement: The device shall conceal password characters from display of user credentials on login interfaces when a user enters a password for a device. Device shall disable the use of default or hardcoded passwords. [Ref: NIST 8228 Expectation 9, IoT SF IoT Security assurance framework Release 3.0 November 2021 2.4.8.15] ITSAR No: ITSAR30907YYMM Page 20 of 75 ## **C.** Level-3 Security Requirements: #### 2.1.C.1 Multi-factor authentication #### Requirement: Authentication mechanisms shall use strong passwords or personal identification numbers (PINs), and shall use two-factor authentication (2FA) or multi-factor authentication (MFA) like OTP-based, Biometrics, certificates etc. [Ref: ENISA Baseline security recommendations for IoT November 2017 GP-TM-23] ## 2.1.C.2 Trusted Computing Base (TCB) #### Requirement: The manufacturer shall give an undertaking if Trusted Computing Base has been implemented, the identity is cryptographically authenticated using the TCB. The device shall utilize an API for the TCB. [Ref. GSMA CLP.12 4.2] #### 2.1.C.3 Brute force Attacks #### Requirement: Brute force attacks shall be impeded by introducing escalating delays following failed user account login attempts, and/or a maximum permissible number of consecutive failed attempts within a certain time interval. [Ref: 1. IoT SF IoT Security assurance framework Release 3.0 November 2021 2.4.13.15, 2.4.8.7. 2. ENISA Baseline security recommendations for IoT November 2017 GP-TM-25 and ETSI EN 303 645 V2.1.0 (2020-04) Provision 5.1-5] #### 2.1.C.4 Locking of account #### Requirement: The client application shall be able to lock an account or to delay additional authentication attempts after a limited number of failed authentication attempts. [Ref: ETSI EN 303 645 V2.1.0 (2020-04) Provision 5.1-5 Example 7] ## **D.** Level-4 Security Requirements: Nil ## **Section 2: Identity Management** ## A. Level-1 Security Requirements: ## 2.2.A.1 Physical and logical identifiers #### Requirement: The device shall be uniquely identified logically and physically, only authorized entities should have access to the physical identifier, which may or may not be the same as the logical identifier. [Ref: NIST 8259A Device Identification] ## **B.** Level-2 Security Requirements: ## 2.2.B.1 Hardcoded unique identity #### Requirement: Hard-coded unique per device identity shall be used in a device. It shall resist tampering by means such as physical, electrical or software. [Ref: ETSI EN 303 645 V2.1.1 (2020-06) Provision 5.4.2] #### 2.2.B.2 Root of Trust #### Requirement: Manufacturer shall submit an undertaking that Root of Trust-backed unique logical identity shall be used to identify them in logs of their physical chain of custody. [Ref: IoT SF IoT Security assurance framework Release 3.0 November 2021 2.4.4.12] #### 2.2.B.3 Consistent authentication security #### Requirement: The manufacturer shall give an undertaking that all authentication pathways and identity management APIs shall implement consistent authentication security control strength, such that there are no weaker alternatives per the risk of the application. ITSAR No: ITSAR30907YYMM Page 22 of 75 [Ref: OWASP ISVS 1.2.4] ## C. Level-3 Security Requirement: Nil ## **D. Level-4 Security Requirements:** Nil ### Section 3: Authorization and access controls ## A. Level-1 Security Requirements: #### 2.3.A.1 Common authorization framework Requirement: It shall be ensured that IoT system accounts across users, services and devices share a common authorization framework. [Ref: OWASP ISVS 2.2.1] #### 2.3.A.2 Failure of access controls Requirement: The access controls shall fail securely, including when an exception occurs. [Ref: OWASP ASVS 4.1.5] #### 2.3.A.3 Directory browsing Requirement: Directory browsing shall be disabled. Additionally, applications should not allow discovery or disclosure of file or directory metadata, such as Thumbs. db, .DS_Store, .git or .svn folders. [Ref: OWASP ASVS 4.3.2] #### 2.3.A.4 Manipulation of user and data attributes Requirement: User and data attributes and policy information used by access controls shall not be manipulated by end users unless specifically authorized. [Ref: OWASP ISVS 4.1.2] ## 2.3.A.5 Access control privileges #### Requirement: The access control privileges shall be defined, justified, and documented. [Ref: IoT SF IoT Security assurance framework Release 3.0 November 2021 2.4.8.10] ## 2.3.A.6 Protection against spoofing #### Requirement: The principle of least privilege shall be enforced by limiting applications and services that run as root or administrator. Users shall only be able to access functions, data files, URLs, controllers, services, and other resources, for which they possess specific authorization. This implies protection against spoofing and elevation of privilege. [Ref: OWASP ASVS 4.1.3] #### 2.3.A.7 Access to sensitive information #### Requirement: The device shall support access control measures to the root/highest privilege account to restrict access to sensitive information or system processes. [Ref: IoT SF IoT Security Assurance Framework Release 3.0 November 2021 2.4.8.9] #### 2.3.A.8 Controlled user account access #### Requirement: The device shall only allow controlled user account access; access using anonymous, or guest user accounts shall not be supported. [Ref: IoT SF IoT Security assurance framework Release 3.0 November 2021 2.4.8.11] ## 2.3.A.9 Access to debug capabilities #### Requirement: Authorized access to device debug capabilities shall be in place along with monitoring and logging such access. ITSAR No: ITSAR30907YYMM Page 24 of 75 [Ref: OWASP ISVS 2.2.4] ## 2.3.A.10 Recording of data #### Requirement: The device or service shall record audio/visual/or any other data in accordance with the authorization of the user only, no passive recording without explicit authorization shall be done. [Ref: IoT SF IoT Security assurance framework Release 3.0 November 2021 2.4.12.14] #### 2.3.A.11 Reset of authorized information #### Requirement: The device allows an authorized and complete factory reset of all the device's authorization information. [Ref: IoT SF IoT Security assurance framework Release 3.0 November 2021 2.4.8.16] #### 2.3.A.12 Access control during initial connection #### Requirement: The device shall maintain appropriate access control during initial connection (i.e., onboarding) and when reestablishing connectivity after disconnection or outage. [Ref: NIST Whitepaper] ## **B.** Level-2 Security Requirements: Nil ## C. Level-3 Security Requirements: ## 2.3.C.1 Trusted service layer #### Requirement: The device application shall enforce access control rules on a trusted service layer, especially if client-side access control is present and could be bypassed. [Ref: OWASP ASVS 4.1.1] ITSAR No: ITSAR30907YYMM Page 25 of 75 #### 2.3.C.2 Administration interfaces #### Requirement: The administration interfaces shall be accessible only by authorized operators. Mutual authentication shall be used over administration interfaces such as certificates shall be used. [Ref: 1. IoT SF IoT Security Assurance Framework Release 3.0 November 2021 2.4.10.13] and 2. OWASP ISVS 4.3.1] ## **D. Level-4 Security Requirements:** Nil ## **Section 4: Securely storing sensitive information.** ## A. Level-1 Security Requirements: Nil ## **B.** Level-2 Security Requirements: ## 2.4.B.1 Sensitive security parameters #### Requirement: Sensitive security parameters in persistent storage shall be stored securely by the device. #### [Ref: ETSI EN 303 645 V2.1.0 (2020-04) Provision 5.4-1] #### 2.4.B.2 Hardcoded security parameters #### Requirement: Security parameters and passwords shall not be hard coded into source code or stored in a local file. [Ref:
IoT SF IoT Security assurance framework Release 3.0 November 2021 2.4.6.5] #### 2.4.B.3 Secure storing of passwords #### Requirement: The device shall securely store any passwords using secure cryptographic controls prescribed in Table1 of the latest document "Cryptographic Controls for Indian Telecom Security Assurance Requirements (ITSAR)". ITSAR No: ITSAR30907YYMM Page 26 of 75 ## 2.4.B.4 Salting and hashing of passwords #### Requirement: Passwords shall be stored in a form that is resistant to offline attacks. Passwords shall be salted and hashed using an approved one-way key derivation or password hashing function. Key derivation and password hashing functions shall take a password, a salt, and a cost factor as inputs when generating a password hash. Salt shall be at least 32 bits in length and be chosen arbitrarily to minimize salt value collisions among stored hashes. For each credential, a unique salt value and the resulting hash shall be stored. #### [Ref: OWASP ASVS 2.4.1 & OWASP ASVS 2.4.2] ## 2.4.B.5 bcrypt #### Requirement: If bcrypt is used, then the work factor shall be as large as the verification server performance will allow, with a minimum of 10. [Ref: OWASP ASVS 2.4.4] ## C. Level-3 Security Requirements: #### 2.4.C.1 Storing of sensitive data #### Requirement: OEM shall ensure that sensitive data, such as private keys and certificates, shall be stored securely by leveraging dedicated hardware security features. [Ref: OWASP ISVS 5.1.4] #### 2.4.C.2 Personal Identifiable Information (PII) #### Requirement: Sensitive information, such as personal identifiable information (PII) and credentials shall be stored securely using secure cryptographic controls prescribed in Table1 of the latest document "Cryptographic Controls for Indian Telecom Security Assurance Requirements (ITSAR)". [Ref: OWASP ISVS 2.3.1] ITSAR No: ITSAR30907YYMM Page 27 of 75 #### 2.4.C.3 PBKDF2 #### Requirement: If PBKDF2 is used, then the iteration count shall be as large as verification server performance will allow, typically at least 100,000 iterations. [Ref: OWASP ASVS 2.4.3] #### 2.4.C.4 Secret salt value #### Requirement: An additional iteration of a key derivation function shall be performed using a salt value that is secret and known only to the verifier. The secret salt value shall be stored separately from the hashed password. [Ref: OWASP ASVS 2.4.5] ## 2.4.C.5 Tamper-resistant storage of sensitive data #### Requirement: UICC /embedded UICC should be used for tamper-resistant storage of sensitive data for services, including security keys controlled by the service provider. [Ref: GSMA CLP.14 5.1-1.4] ## 2.4.C.6 Trusted Computing Base (TCB) #### Requirement: If Trusted Computing Base has been implemented, the unique identifier shall be stored in the TCB's trust anchor. [Ref: GSMA CLP.13 6.6] #### 2.4.C.7 Trust Anchor #### Requirement: - a) Tamper resistant Trust Anchor shall be used. - b) Static key or personalize key shall be used with a trust anchor device specific. [Ref: GSMA CLP.13 6.1.1,6.1.1.1,6.1.1.2, 6.3] ## **D. Level-4 Security Requirements:** ## 2.4.D.1 Cryptographic Root of Trust #### Requirement: Devices should be provisioned with a cryptographic root of trust that is hardware-based and immutable. [Ref: OWASP ISVS 1.2.6] #### **Section 5: Data Protection** ## A. Level-1 Security Requirements: #### 2.5.A.1 Data in browser storage ## Requirement: Data stored in browser storage (such as local Storage, session Storage, Indexed DB, or cookies) shall not contain sensitive data. [Ref: OWASP ASVS 8.2.2] #### 2.5.A.2 Clearance of authenticated data #### Requirement: Authenticated data shall be cleared from client storage, such as the browser DOM, after the client or session is terminated. [Ref: OWASP ASVS 8.2.3] ## 2.5.A.3 Personally Identifiable Information collection #### Requirement: Manufacturer shall share details of the PII collected by the device and the device shall ensure that PII is encrypted and is accessible only after successful authentication and authorization. [Ref: IoT SF IoT Security Assurance Framework Release 3.0 November 2021 4.12.2] ITSAR No: ITSAR30907YYMM Page 29 of 75 ## **B.** Level-2 Security Requirements: ## 2.5.B.1 Sensitive information in memory #### Requirement: Sensitive information contained in memory shall be overwritten as soon as it is no longer required to mitigate memory dumping attacks, using zeroes or random data. [Ref: OWASP ASVS 8.3.6] # **C.** Level-3 Security Requirements: Nil ## **D. Level-4 Security Requirements:** Nil # Section 6: Secure input and output handling ## A. Level-1 Security Requirements: Nil ## **B.** Level-2 Security Requirements: ## 2.6.B.1 Validation of input data and transferred data #### Requirement: The device software shall validate data input via user interfaces or transferred via Application Programming Interfaces (APIs) or between networks in services and devices. All data being transferred over interfaces shall be validated by checking the data type, length, format, range, authenticity, origin, and frequency where appropriate. [Ref: ETSI EN 303 645 V2.1.1 (2020-06) Provision 5.13-1, IoT SF IoT Security assurance framework Release 3.0 November 2021 2.4.10.10] ## 2.6.B.2 Validation of inputs and outputs #### Requirement: a) All inputs and outputs shall be validated using, for example, an allow list (formerly 'whitelist') containing authorized origins of data and valid attributes of such data, use - "Fuzzing" tests to check for acceptable responses or output for both expected (valid) and unexpected (invalid) input stimuli. - b) All input (HTML form fields, REST requests, URL parameters, HTTPS headers, cookies, batch files, RSS feeds, etc.) shall be validated using positive validation (allow lists). - c) Structured data shall be strongly typed and validated against a defined schema, including allowed characters, length, and pattern (e.g., credit card numbers, e-mail addresses, telephone numbers, or validating that two related fields are reasonable, such as checking that suburb and zip/postcode match). [Ref: a) IoT SF IoT Security assurance framework Release 3.0 November 2021 2.4.10.12, 2.4.11.9 and 2.4.5.23 b) OWASP ISVS 5.1.3, 5.1.4] #### 2.6.B.3 Validation checks #### Requirement: Validation checks shall be incorporated into applications to detect any corruption of information through processing errors or deliberate acts. [Ref: ISO 27001 A.12.2.2] ## 2.6.B.4 Warning regarding potentially untrusted content #### Requirement: URL redirects and forwards shall only allow destinations that appear on an allow list or show a warning when redirecting to potentially untrusted content. [Ref: OWASP ISVS 5.1.5] ## **C.** Level-3 Security Requirements: ## 2.6.C.1 HTTPS parameter pollution attacks #### Requirement: The application shall have defences against HTTPS parameter pollution attacks, particularly if the application framework makes no distinction about the source of request parameters (GET, POST, cookies, headers, or environment variables). [Ref: OWASP ISVS 5.1.1] #### 2.6.C.2 Mass parameter assignment attacks #### Requirement: Mass parameter assignment attacks shall be protected by frameworks, or the application shall have countermeasures to protect against unsafe parameter assignment, such as marking fields private or similar. [Ref: OWASP ISVS 5.1.2] #### 2.6.C.3 OS command injection #### Requirement: Embedded applications shall not be susceptible to OS command injection by performing input validation and escaping of parameters within firmware code, shell command wrappers, and scripts. [Ref: OWASP ISVS 1.3.15] ## D. Level-4 Security Requirements: Nil ## **Section 7: Communicate Securely** ## A. Level-1 Security Requirements: ## 2.7.A.1 Cryptographic algorithms and primitives #### Requirement: Secure cryptographic controls prescribed in Table1 of the latest document "Cryptographic Controls for Indian Telecom Security Assurance Requirements (ITSAR)" shall only be used. Such cryptographic algorithms and primitives shall be updateable. [Ref: ETSI EN 303 645 V2.1.1 (2020-06) Provision 5.5-2, 5.5-3, and 5.5-1] ## 2.7.A.2 Internal or external traffic #### Requirement: Internal or external traffic must not expose the device credentials. [Ref: ENISA Baseline Security Recommendation for IoT November 2017 GP-TM-40] ITSAR No: ITSAR30907YYMM Page 32 of 75 #### 2.7.A.3 Enabling specific ports #### Requirement: Only specific ports that are necessary shall be enabled and all other ports shall be disabled. [Ref: ENISA Baseline Security Recommendation for IoT November 2017 GP-TM-45] #### 2.7.A.4 Secure connection with remote servers #### Requirement: Where the application communicates with a device related remote server(s), or device, it shall be done over a secure connection. [Ref: IoT SF IoT Security assurance framework Release 3.0 November 2021 2.4.7.19 and 2.4.11.4] #### 2.7.A.5 Access via network interface #### Requirement: Access to device functionality via a network interface in the initialized state should only be possible after mutual authentication on that interface. #### [Ref: ETSI EN 303 645 V2.1.1 (2020-06) Provision 5.5-4] ## 2.7.A.6 Configuration changes via network interface #### Requirement: Device functionality that allows security-relevant changes in configuration via a network interface shall be accessible only after mutual authentication. The exception is for network service protocols that are relied upon by the device and where the manufacturer cannot guarantee what configuration will be required for the device to operate. Protocols that are an exception include ARP, DHCP, DNS, ICMP, and NTP. #### [Ref: ETSI EN 303 645 V2.1.1 (2020-06) Provision 5.5-5] #### 2.7.A.7 Web interfaces #### Requirement: The web interfaces shall fully encrypt the user session, from the device to the backend services, and ensure that they are not susceptible to XSS, CSRF, SQL injection, etc. [Ref: ENISA Baseline Security Recommendation for IoT November 2017 GP-TM-52]
ITSAR No: ITSAR30907YYMM Page 33 of 75 #### 2.7.A.8 Communication of sensitive data between device and associated services #### Requirement: The confidentiality of sensitive personal data communicated between the device and associated services shall be protected. Critical security parameters should be encrypted in transit. Secure cryptographic controls prescribed in Table1 of the latest document "Cryptographic Controls for Indian Telecom Security Assurance Requirements (ITSAR)" shall only be used. [Ref: ETSI EN 303 645 V2.1.1 (2020-06) Provision 5.8-2] #### 2.7.A.9 Communication of personal data between device and web interface #### Requirement: Any personal data communicated between the web interface/mobile app and the device shall be encrypted. Secure cryptographic controls prescribed in Table1 of the latest document "Cryptographic Controls for Indian Telecom Security Assurance Requirements (ITSAR)" shall only be used. [Ref: IoT SF IoT Security Assurance Framework Release 3.0 November 2021 2.4.10.19and 2.4.13.35] #### 2.7.A.10 Sensitive data through HTTP message #### Requirement: Sensitive data shall be sent to the server in the HTTP message body or headers, and that query string parameters from any HTTP verb shall not contain sensitive data. [Ref: OWASP ASVS 8.3.1] ## **B.** Level-2 Security Requirements: #### 2.7.B.1 Authentication of data received from other devices #### Requirement: The device shall not trust data received and shall always verify any interconnections. Discover, identify, and verify/authenticate the devices connected to the network before trust can be established, and preserve their integrity for reliable solutions and services. [Ref: ENISA Baseline Security Recommendation for IoT November 2017 GP-TM-42] #### 2.7.B.2 Authentication of connections at all levels of protocols #### Requirement: The device shall make intentional connections, shall prevent unauthorized connections to it or other devices the device is connected to, at all levels of the protocols. [Ref: ENISA Baseline Security Recommendation for IoT November 2017 GP-TM-44] ## **C.** Level-3 Security Requirements: #### 2.7.C.1 Cloud service #### Requirement: If run as a cloud service, the cloud service UDP and TCP-based communications (such as MQTT connections) shall be encrypted using Secure cryptographic controls prescribed in Table1 of the latest document "Cryptographic Controls for Indian Telecom Security Assurance Requirements (ITSAR)" and authenticated using latest DTLS 1.2 and above standard and TLS 1.2 and above standard. [Ref: GSMA CLP.14 5.1.1.4 and IoT SF IoT Security assurance framework Release 3.0 November 2021 2.4.13.23] #### 2.7.C.2 TLS #### Requirement: TLS 1.2 and above shall be used regardless of the sensitivity of the data being transmitted. Secure cryptographic controls prescribed in Table1 of the latest document "Cryptographic Controls for Indian Telecom Security Assurance Requirements (ITSAR)" shall only be used. [Ref: ENISA Baseline Security Recommendations for IoT November 2017 GP-TM-39] #### 2.7.C.3 Webserver devices #### Requirement: Where a device related to a webserver encrypts communications using TLS and requests a client certificate, the server(s) shall establish a connection if the client certificate and its chain of trust are valid. [Ref: IoT SF IoT Security assurance framework Release 3.0 November 2021 2.4.13.9] ITSAR No: ITSAR30907YYMM Page 35 of 75 #### 2.7.C.4 Verification of X.509 certificate - TLS ## Requirement: If TLS 1.2 and above is used, then the device shall cryptographically verify the X.509 certificate. [Ref: OWASP ISVS 4.1.3] ## 2.7.C.5 Certificate and keys - TLS #### Requirement: If TLS 1.2 and above is used, the device's TLS implementation shall use its own certificate store, pins to the endpoint's certificate or public key, and disallows connections to endpoints with different certificates or keys, even if signed by a trusted CA. [Ref: OWASP ISVS 4.1.6] #### 2.7.C.6 Client server model #### Requirement: If client server model is used for communication, then device shall use up to date configurations to enable and set the preferred order of algorithms and ciphers used for communication, using TLS 1.2 or later. [Ref: OWASP ASVS V9.1] ## 2.7.C.7 Replay attacks #### Requirement: Protection against replay attacks shall be built into the device. [Ref: OWASP ISVS 4.1.1] #### 2.7.C.8 Security for email notifications #### Requirement: The device shall implement transport-level security as per Secure cryptographic controls prescribed in Table1 of the latest document "Cryptographic Controls for Indian Telecom Security Assurance Requirements (ITSAR)" for email notifications to ensure the privacy of the communication while in transit. ITSAR No: ITSAR30907YYMM Page 36 of 75 # **D. Level-4 Security Requirements:** Nil ## **Section 8: Cryptography** # A. Level-1 Security Requirements: ## 2.8.A.1 Cryptographic controls #### Requirement: Secure cryptographic controls prescribed in Table1 of the latest document "Cryptographic Controls for Indian Telecom Security Assurance Requirements (ITSAR)" for the protection of information shall be used. [Ref: ISO:27001 A.12.3.1] ## 2.8.A.2 Cryptographic keys ## Requirement: Cryptographic secrets and keys shall be unique per device. all encryption keys that are unique to each device shall be either securely and truly randomly internally generated or securely programmed into each device in accordance with industry standard FIPS140-2 or equivalent. The manufacturer shall submit an undertaking in this regard. [Ref: a) OWASP ISVS 2.4.1 b) IoT SF IoT Security assurance framework Release 3.0 November 2021 2.4.14.9] #### 2.8.A.3 Cryptographic key chain #### Requirement: The OEM shall submit an undertaking that the cryptographic key chain used for signing production software is different from that used for any other test, development or other software images or support requirement. [Ref: IoT Security assurance framework Release 3.0 November 2021 2.4.9.8] ITSAR No: ITSAR30907YYMM Page 37 of 75 #### 2.8.A.4 Secure sources of randomness #### Requirement: Secure sources of randomness shall be provided by the operating system and/or hardware for all security needs. [Ref: OWASP ISVS 2.4.3] ## **B.** Level-2 Security Requirements: #### 2.8.B.1 Confidentiality, authenticity, and/or integrity of data #### Requirement: Secure cryptographic controls prescribed in Table1 of the latest document "Cryptographic Controls for Indian Telecom Security Assurance Requirements (ITSAR)" shall be used to protect the confidentiality, authenticity, and/or integrity of data and information (including control messages), in transit and in rest. [Ref: ENISA Baseline security recommendations for IoT November 2017 GP-TM-34] #### 2.8.B.2 Secured sessions #### Requirement: Secure session shall be established after each disconnected session to prevent intentional and unintentional Denial of Service (DoS). [Ref: GSMA CLP.13 9.1] #### 2.8.B.3 Storage of sensitive unencrypted parameters #### Requirement: The device shall store all sensitive unencrypted parameters (e.g., keys) in a secure, tamper resistant location. [Ref: IoT Security assurance framework Release 3.0 November 2021 2.4.9.7] #### 2.8.B.4 Applications stored outside CPU's core EEPROM Requirement: ITSAR No: ITSAR30907YYMM Page 38 of 75 All applications stored outside of a CPU's core EEPROM shall be cryptographically authenticated. [Ref: GSMA CLP.13 6.11] **C.** Level-3 Security Requirements: Nil D. Level-4 Security Requirements: Nil # **Section 9: Minimize Exposed Attack Surfaces** ## A. Level-1 Security Requirements: ## 2.9.A.1 Unused communication ports Requirement: All communications port(s) which are not used as part of the device's normal operation shall not be physically accessible and shall be disabled. [Ref: IoT SF IoT Security Assurance Framework Release 3.0 November 2021 2.4.4.9] # **B. Level-2 Security Requirements:** #### 2.9.B.1 Physical decapsulation, side channel and glitching attacks Requirement: The devices shall have tamper resistant device casting and shall be provided protection against physical decapsulation, side channel and glitching attacks. [Ref: OWASP ISVS 5.1.9 and GSMA CLP 7.3] ## 2.9.B.2 Debugging and Testing Technologies Requirement: ITSAR No: ITSAR30907YYMM Page 39 of 75 Disable Debugging and Testing Technologies: The final configuration of the device to be deployed shall never contain debugging, diagnostic, or testing interfaces that could be abused by an adversary. Such interfaces are: - a) Command-line console interfaces - b) Consoles with verbose debugging, diagnostic, or error messages - c) Hardware debugging ports such as JTAG or SWD - d) Network services used for debugging, diagnostics, or testing - e) Administrative interfaces, such as SSH or Telnet All such technologies should be disabled in the final configuration. The manufacturer shall submit an undertaking that hardware has no undocumented debug features, such as special pin configurations that can enable or disable certain functionality. [Ref: a) GSMA CLP.13 8.2 b) OWASP ISVS 5.1.7] ## 2.9.B.3 Unused network and logical interfaces #### Requirement: All unused network and logical interfaces shall be disabled, offering a configuration option that logically disables the interfaces. [Ref: ETSI EN 303 645 V2.1.1 (2020-06) Provision 5.6-1 and NIST (8259) A] #### 2.9.B.4 Software services #### Requirement: The manufacturer shall only enable software services that are used or required for the intended use or operation of the device. [Ref: ETSI EN 303 645 V2.1.1 (2020-06) Provision 5.6-5] # 2.9.B.5 Debug interface #### Requirement: Debug interface shall communicate only with authorized and authenticated entities on the production devices. The functionality of any interface should be minimized to its essential task. ITSAR No: ITSAR30907YYMM Page 40 of 75 ## C. Level-3 Security Requirements: Nil # **D. Level-4 Security Requirements:** Nil ## **Section 10:
Vulnerability Management** ## A. Level-1 Security Requirements: # 2.10.A.1 Vulnerability management related policies ## Requirement The manufacturer shall submit an undertaking that the following policies/processes are in place for - a) receiving reports of vulnerabilities - b) recording reported vulnerabilities - c) responding to reported vulnerabilities, including the process of coordinating vulnerability response activities among component suppliers and third-party vendors. - d) disclosing reported vulnerabilities. - e) receiving notification from component suppliers and third-party vendors about any change in the status of their supplied components, such as the end of production, end of support, deprecated status (e.g., the product is no longer recommended for use), or known insecurities. - f) interacting with both internal and third-party security researcher(s) on the devices or services. - g) conflict resolution process for Vulnerability Disclosures - h) Security advisory notification - i) Retention of the key security design information and risk analysis over the whole lifecycle of the device or service. - j) Informing users and relevant stakeholders when vulnerabilities affect devices through established communication channels (website, e-mail, security advisory pages, changelogs, etc.). ## 2.10.A.2 Vulnerability scanners Requirement: ITSAR No: ITSAR30907YYMM Page 41 of 75 The device shall support the use of vulnerability scanners. #### [Ref: NIST 8228 Expectation-7] ## 2.10.A.3 Third party and open-source software #### Requirement: The manufacturer shall verify the potential areas of risk that come with the use of third-party and open-source software and take actions to mitigate such risks. [Ref: OWASP ISVS 1.2.2] ## **B.** Level-2 Security Requirements: ## 2.10.B.1 Abnormal number of requests #### Requirement: The device application shall provide anomaly detection and alert on abnormal numbers of requests, such as by IP, user, total per hour or day, or whatever makes sense for the application. [Ref: OWASP ASVS 8.1.4, GSMA CLP.13 6.13] # C. Level-3 Security Requirements: ## 2.10.C.1 Review of device OS/source code #### Requirement: - a) OEM shall follow best security practices including secure coding for software development. Source code shall be made available either at Telecom Security Testing Laboratory (TSTL) premises or at the mutually agreed location for source code review by the designated TSTL. It may be supported by furnishing the Software Test Document (STD). - b) Also, OEM shall submit the undertaking as below: - i) Industry standard best practices of secure coding have been followed during the entire software development life cycle of the device which includes OEM developed code, third party software and open-source code libraries used/embedded in the device. - ii) device software shall be free from Common Weakness Enumeration (CWE) top 25, Open Worldwide Application Security Project (OWASP) top 10 security vulnerabilities and OWASP top 10 API Security vulnerabilities as on the date of latest release of product or three months prior to the date of offer of product for testing, whichever is latest. For security weaknesses, vulnerabilities identified or discovered during the interim period, OEM shall give mitigation plan. iii) The binaries for device and upgrades/updates thereafter generated from the source code are free from all known security vulnerabilities stated in (ii) above. [Ref: : a) https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html - b) https://owasp.org/www-project-top-ten/ - c) https://owasp.org/www-project-api-security/] ## **D. Level-4 Security Requirements:** ## 2.10.D.1 Penetration testing strategy Requirement: The device shall implement a complete persistent penetration-testing strategy. [Ref: GSMA CLP-13 7.11] # **Section 11: Incident Management** # A. Level-1 Security Requirements: # 2.11.A.1 Operational and security events Requirement: The device shall log its operational and security events. [Ref: NIST Expectation 15] # **B.** Level-2 Security Requirements: #### 2.11.B.1 Detection of potential incidents Requirement: ITSAR No: ITSAR30907YYMM Page 43 of 75 The device shall facilitate the detection of potential incidents by internal or external controls, such as intrusion prevention systems, anti-malware utilities, and file integrity checking mechanisms. [Ref: NIST Expectation 17] # **C.** Level-3 Security Requirements: Nil ## **D. Level-4 Security Requirements:** Nil # **Section 12: Keep Software Updated** # A. Level-1 Security Requirements: #### 2.12.A.1 Remote update Requirement: Where remote update is supported, there shall be an established process or plan for validating and updating devices on an on-going or remedial basis. [Ref: IoT SF IoT Security Assurance Framework Release 3.0 November 2021 2.4.3.22] ## 2.12.A.2 Secure update Requirement: All software components in the devices shall be securely updateable. [Ref: ETSI EN 303 645 V2.1.1 (2020-06) Provision 5.3-1] #### 2.12.A.3 Authenticate to update server Requirement: ITSAR No: ITSAR30907YYMM Page 44 of 75 The device shall authenticate to the update server component prior to downloading the update. [Ref: OWASP ISVS 3.4.10] ## 2.12.A.4 Authenticity of the update Requirement: The update shall be applied right after the authenticity of the update is validated. [Ref: OWASP ISVS 3.4.4] ## 2.12.A.5 Automatic updates and/or update notifications #### Requirement: If the device supports automatic updates and/or update notifications, these should be enabled in the initialized state and configurable so that the user can enable, disable, or postpone installation of security updates and/or update notifications. [Ref: ETSI EN 303 645 V2.1.1 (2020-06) Provision 5.3-6] #### 2.12.A.6 Checking for security updates #### Requirement: The device should check after initialization, and then periodically, whether security updates are available. Security updates shall be timely, and the devices shall be updated automatically upon a pre-defined schedule. [Ref: ETSI EN 303 645 V2.1.1 (2020-06) Provision 5.3-5] ## 2.12.A.7 Notification during software update #### Requirement: The device shall notify the user when the application of a software update will disrupt the basic functioning of the device along with the approximate expected duration of downtime. [Ref: ETSI EN 303 645 V2.1.1 (2020-06) Provision 5.3-12] ## 2.12.A.8 Over-The-Air (OTA) update #### Requirement: The manufacturer shall ensure that the device software/firmware, its configuration, and its applications have the ability to update Over-The-Air (OTA), that the update server is secure, that the update file is transmitted via a secure connection. Secure cryptographic controls prescribed in Table1 of the latest document "Cryptographic Controls for Indian Telecom Security Assurance Requirements (ITSAR)" shall only be used. [Ref: ENISA Baseline Security Recommendation for IoT November 2017 GP-TM-18] ## 2.12.A.9 Failure of update #### Requirement: In the event of an update failure, the device shall revert to a backup image. [Ref: OWASP ISVS 3.4.7] # **B.** Level-2 Security Requirements: #### 2.12.B.1 Authenticity and integrity of software updates #### Requirement: - a) Software package integrity shall be validated during the software update stage. - b) The device shall support software package integrity validation via cryptographic means, e.g., digital signature using Secure cryptographic controls prescribed in Table 1 of the latest document "ITSAR for Cryptographic Controls" only. To this end, the device has a list of public keys or certificates of authorized software sources, and uses the keys to verify that the software update originated from only these sources. - c) Tampered software shall not be executed or installed if integrity check fails. - d) A security mechanism is required to guarantee that only authorized individuals can initiate and deploy a software update and modify the list mentioned in (b) above. Note: Code signing (valid and not time expired) is also allowed as an option in (b) above. [Ref: TSDSI STD T1.3GPP 33.117 17.2.0 V1.2.0 Section 4.2.3.3.5] ITSAR No: ITSAR30907YYMM Page 46 of 75 ## C. Level-3 Security Requirements: ## 2.12.C.1 Firmware-update through peer #### Requirement: If the network peer claims to offer a firmware-update service, the TCB shall authenticate the peer as being a part of the core IoT Service Provider network before accepting firmware updates from the peer. [Ref: GSMA CLP.13 6.1] # **D. Level-4 Security Requirements:** Nil # **Section 13: Ensure Software Integrity** # A. Level-1 Security Requirements: #### 2.13.A.1 Back doors ## Requirement: Manufacturer shall submit an undertaking that the application source code and third-party libraries: - Do not contain back doors, such as hard-coded or additional undocumented accounts or keys, code obfuscation, undocumented binary blobs, rootkits, or anti-debugging, insecure debugging features, or otherwise out of date, insecure, or hidden functionality that could be used maliciously - ii. Do not contain time bombs by searching for date and time related functions, malicious code, such as salami attacks, logic bypasses, logic bombs, Easter eggs, or any other potentially unwanted functionality [Ref: OWASP ASVS 10.2.3, 10.2.5 and 10.2.6] #### 2.13.A.2 User interface #### Requirement: The user interface shall be protected by an automatic session idle logout timeout function. ITSAR No: ITSAR30907YYMM Page 47 of 75 [Ref: IoT SF IoT Security assurance framework Release 3.0 November 2021 2.4.6.15] # 2.13.A.3 Removal of unnecessary packages Requirement: All unnecessary packages must be removed and/or disabled from the system. Additionally, all unused operating system services and unused networking ports must be disabled or blocked. Only secure maintenance access shall be permitted and all known insecure protocols shall be disabled. # **B.** Level-2 Security Requirements: ## 2.13.B.1 Persistent
filesystem storage Requirement: Persistent filesystem storage volumes must be encrypted. [Ref: OWASP ASVS 3.2.5] ## **C.** Level-3 Security Requirements: #### 2.13.C.1 Secure boot mechanisms Requirement: The device shall verify its software using secure boot mechanisms. [Ref: ETSI EN 303 645 V2.1.1 (2020-06) Provision 5.7-1 #### 2.13.C.2 Unnecessary Services Removal #### Requirement: The device shall only run protocol handlers and services which are needed for its operation, and which do not have any known security vulnerabilities. Inparticular, by default the following services shall be initially configured to be disabled on the device by the vendor except if services are needed during deployment. In that case those services shall be disabled according to vendor's instructions after deployment is done. - File Transfer Protocol (FTP) - Trivial File Transfer Protocol (TFTP) - Telnet - rlogin, Rate Control Protocol (RCP), Remote Shell Protocol (RSH) ITSAR No: ITSAR30907YYMM Page 48 of 75 - HTTP - Simple Network Management Protocol (SNMP) v1 and v2 - SSHv1 - Transmission Control Protocol (TCP) / User Datagram Protocol (UDP) Small Servers (Echo, Chargen, Discard and Daytime) - Finger - Bootstrap Protocol (BOOTP) server - Discovery protocols (Cisco Discovery Protocol (CDP), Link Layer Discovery Protocol (LLDP)) - IP Identification Service (Identd) - Packet Assembler/Disassembler (PAD) - Maintenance Operations Protocol (MOP) Any other protocols, services that are vulnerable are also to be permanently disabled. Full documentation of required protocols and services (communication matrix) of the device and their purpose needs to be provided by the OEM as a prerequisite for the test case. ## [Ref: TSDSI STD T1.3GPP 33.117-17.1.0 V.1.1.0. Section-4.3.2.1] # 2.13.C.3 Controls against mobile code #### Requirement: Where the use of mobile code is authorized, the configuration shall ensure that the authorized mobile code operates according to a clearly defined security policy, and unauthorized mobile code shall be prevented from executing. [Ref: ISO 27001 A.10.4.2] # **D. Level-4 Security Requirements:** Nil # **Section 14: Firmware and Bootloader Security** # A. Level-1 Security Requirements: ## 2.14.A.1 Configuration of firmware #### Requirement: The devices released shall have firmware configured with secure defaults appropriate for a release build (as opposed to debug versions) ITSAR No: ITSAR30907YYMM Page 49 of 75 ## 2.14.A.2 Design of device firmware ## Requirement: Device firmware shall be designed to isolate privileged code and data from portions of the firmware that do not need access to them [Ref: ENISA Baseline security recommendations for IoT November 2017 GP-TM-28] ## **B.** Level-2 Security Requirements: Nil # **C.** Level-3 Security Requirements: #### 2.14.C.1 Secure boot process #### Requirement: The secure boot process shall be enabled by default, and the device's processor system shall have an irrevocable hardware secure boot process. [Ref: IoT SF IoT Security assurance framework Release 3.0 November 2021 2.4.4.1, 2.4.4.4] ## 2.14.C.2 Authenticity of first stage boot loader #### Requirement: The authenticity of the first stage bootloader shall be verified by a trusted component of which the configuration in read-only memory (ROM) cannot be altered (e.g., CPU Based Secure Boot/Trusted Boot with a hardware root of trust). [Ref: OWASP ISVS 3.1.4] ## 2.14.C.3 Default/standard boot loader #### Requirement: The default/standard bootloader shall not be used if it allows alternative images or firmware flashing. ITSAR No: ITSAR30907YYMM Page 50 of 75 [Ref: GSMA CLP.13 6.17] ## 2.14.C.4 Authenticity of boot loader stages Requirement: The authenticity of bootloader stages or application code shall get cryptographically verified before executing subsequent steps in the boot process. [Ref: OWASP ISVS 3.1.5] ## 2.14.C.5 Executable image of first-stage boot loader Requirement: The first-stage bootloader executable image shall be locked in EEPROM and should only be updated through a secure process. [Ref: GSMA CLP.13 6.17] ## 2.14.C.6 Sensitive information in boot loader stages Requirement: Bootloader stages shall not contain sensitive information (e.g., private keys or passwords logged to the console) as part of device start-up. [Ref: OWASP ISVS 3.1.6] #### 2.14.C.7 Code loading of boot loader Requirement: The bootloader shall not allow code loaded from arbitrary locations, including both local storage (e.g., SD, USB, etc.) and network locations (e.g. NFS, TFTP, etc.). [Ref: OWASP ISVS 3.1.1] #### 2.14.C.8 Communication interfaces Requirement: The communication interfaces such as USB, UART, and other variants shall be disabled or adequately protected during every stage of the device's boot process. [Ref: OWASP ISVS 3.1.3] # **D. Level-4 Security Requirements:** Nil ## **Section 15: Secured Execution Platform** # A. Level-1 Security Requirements: ## 2.15.A.1 Non-volatile memory's contents Requirement: Where microcontroller/microprocessor(s) reads the firmware from a separate non-volatile memory device, the non-volatile memory's contents shall be encrypted. [Ref: IoT SF IoT Security assurance framework Release 3.0 November 2021 2.4.4.13] # **B.** Level-2 Security Requirements: #### 2.15.B.1 Minimum Viable execution Platform Requirement: A device should support Minimum Viable execution Platform (Application Roll-Back). [Ref: GSMA CLP.13 6.7] # **C. Level-3 Security Requirements:** Nil # **D. Level-4 Security Requirements:** Nil ITSAR No: ITSAR30907YYMM Page 52 of 75 # **Section 16: Collection of Logs** ## A. Level-1 Security Requirements: ## 2.16.A.1 Security logs #### Requirement: The device shall collect logs about events with security implications, such as successful and failed authentication attempts, access to debugging functionality etc. #### [Ref: OWASP ISVS 1.4.1] #### 2.16.A.2 Contents of logs ## Requirement: The collected logs shall have the adequate granularity to enable actionable insights and alerts. Logs should include, at a minimum, the type of event, timestamp, source, outcome, and identification of involved actors. #### [Ref: OWASP ISVS 1.4.2] ## 2.16.A.3 Device synchronization #### Requirement: The device shall be synchronized with a reliable time source to ensure the validity of log timestamps. #### [Ref: OWASP ISVS 1.4.3] #### 2.16.A.4 Sensitive information in logs #### Requirement: Verify that collected logs do not include sensitive information, such as PII, credentials and cryptographic keys. #### [Ref: OWASP ISVS 1.4.4] ## 2.16.A.5 Online collection of logs #### Requirement: Verify that collected logs can be securely retrieved from the devices over an online collection, either periodically or on-demand. ITSAR No: ITSAR30907YYMM Page 53 of 75 # [Ref: OWASP ISVS 1.4.5] **B.** Level-2 Security Requirements: Nil **C.** Level-3 Security Requirements: Nil **D. Level-4 Security Requirements:** Nil # **Chapter 3 - Specific Security Requirements** ### **Section 1: Bluetooth** ## A. Level-1 Security Requirements: ## 3.1.A.1 PIN/ Pass-key code Requirement: PIN or Pass-Key codes shall not be easily guessable (e.g., don't use 0000 or 1234). [Ref: OWASP ISVS 4.3.2] #### 3.1.A.2 Encryption keys #### Requirement: Encryption keys shall be of the maximum size the device supports, and verify that this size is sufficient to adequately protect the information transmitted over the Bluetooth connection. The most secure Bluetooth pairing method available shall be used. [Ref: OWASP ISVS 4.3.5] #### 3.1.A.3 Pairing methods #### Requirement: Out Of Band (OOB), numeric comparison, or passkey entry pairing methods shall be used depending on the communicating device's capabilities. [Ref: OWASP ISVS 4.3.6] ## 3.1.A.4 Bluetooth Security Mode and Level #### Requirement: The strongest Bluetooth security mode and level supported by the device shall be used. For Bluetooth 4, security mode 4, level 4 shall be used. For Bluetooth 2.1 through 4.0 devices, security mode 4, level 3 shall be used, and for Bluetooth 2.0 and older devices security mode 3 is recommended. ITSAR No: ITSAR30907YYMM Page 55 of 75 | [Ref: OWASP ISVS 4.3.7] | |---| | 3.1.A.5 Encryption of Bluetooth connections | | Requirement: | | Bluetooth connections should be encrypted when transmitting user IDs, passwords, and other sensitive information. | | [Ref: Agelight IoT Safety Architecture & Risk Toolkit v4.0 1] | | | | B. Level-2 Security Requirements: | | 3.1.B.1 Pairing and discovery | | Requirement: | | Pairing and discovery shall be blocked in Bluetooth devices except when necessary. | | [Ref: OWASP ISVS 4.3.1] | | C. Level-3 Security Requirements: Nil | | D. Level-4 Security Requirements: | # Section 2: Zigbee Nil A. Level-1 Security Requirements: #### 3.2.A.1 Version ## Requirement: Zigbee version 3.0 and above shall be used [Ref: OWASP ISVS 4.5.1] #### 3.2.A.2 Joining Zigbee network #### Requirement: The most secure way of joining the Zigbee network shall be used, depending on the selected security architecture. For example, for the centralized architecture, use out-of-band install codes and for the distributed one, use pre-configured link keys. [Ref: OWASP ISVS 4.5.3] #### 3.2.A.3 Pre-configured global link key ## Requirement: The default pre-configured global link key (i.e., ZigbeeAlliance09) shall not be used to join the network, except if explicitly required for compatibility reasons and if associated risks have been considered. [Ref: OWASP ISVS 4.5.4] ## 3.2.A.4 Activation of pairing mode #### Requirement: User interaction shall be required to activate pairing mode for both the joining nodes and the Zigbee Trust Center or router. Devices should automatically exit pairing mode after a pre-defined short amount of time, even if the pairing is unsuccessful. [Ref: OWASP ISVS 4.5.5] #### 3.2.A.5 Network key generation ITSAR No: ITSAR30907YYMM Page 57 of
75 | Requirement: | |--| | The network key shall be randomly generated (for example during the initial network setup). | | [Ref: OWASP ISVS 4.5.6] | | 3.2.A.6 Network key regeneration | | Requirement: | | The network key shall be periodically regenerated. | | | | B. Level-2 Security Requirements: | | 3.2.B.1 Validation of Paired Devices | | Requirement: | | Users shall obtain an overview of paired devices to validate that they are legitimate (for example, by comparing the MAC addresses of connected devices to the expected ones). | | [Ref: OWASP ISVS 4.5.8] | | C. Level-3 Security Requirements: | | Nil | | D. Level-4 Security Requirements: | | Nil | | Section 3: Wi-Fi | | | | A. Level-1 Security Requirements: | | 3.3.A.1 Disabling Wi-FI connectivity | | Requirement: | Wi-Fi connectivity shall be disabled unless required as part of device functionality. Devices with no need for network connectivity or which support other types of network connectivity, such as Ethernet, shall have the Wi-Fi interface disabled. [Ref: OWASP ISVS 4.4.2] #### 3.3.A.2 Protection of Wi-Fi communications Requirement: WPA2 or higher shall be used to protect Wi-Fi communications. In case WPA is used, it shall be encrypted with AES (CCMP mode). [Ref: OWASP ISVS 4.4.3] ## 3.3.A.3 Use of Wi-Fi Protected Setup (WPS) Requirement: Wi-Fi Protected Setup (WPS) shall not use to establish Wi-Fi connections between devices. [Ref: OWASP ISVS 4.4.4] # **B.** Level-2 Security Requirements: #### 3.3.B.1 SSIDs Requirement: The SSIDs should not be the default and should be hidden for all connected devices, reducing the attack surface of a brute-force attack. [Ref: OWASP ISVS 4.4.1] # **C.** Level-3 Security Requirements: ITSAR No: ITSAR30907YYMM Page 59 of 75 # **D. Level-4 Security Requirements:** Nil ## **Section 4: LTE** # A. Level-1 Security Requirements: ## 3.4.A.1 Confidentiality on the Air Interface Requirement: LTE shall enable confidentiality on the air interface. [Ref: NIST SP 800-187 5.2] ## 3.4.A.2 Ciphering Indicator Requirement: LTE shall use the ciphering indicator [Ref: NIST SP 800-187 5.3] ## 3.4.A.3 SIM/USIM/eSIM PIN Code Requirement: The device shall use SIM/USIM/eSIM PIN Code [Ref: NIST SP 800-187 5.7] ## 3.4.A.4 Temporary Identities Requirement: LTE shall use temporary identities [Ref: NIST SP 800-187 5.8] | B. Level-2 Security Requirements: | | | | |---|--|--|--| | Nil | | | | | | | | | | C. Level-3 Security Requirements: | | | | | Nil | | | | | D. Level-4 Security Requirements: | | | | | Nil | | | | | Section 5: LoRaWAN | | | | | | | | | | A. Level-1 Security Requirements: | | | | | 3.5.A.1 Version | | | | | Requirement: | | | | | LoRaWAN version 1.1 or above shall be used. | | | | | [Ref: OWASP ISVS 4.6.1] | | | | | 3.5.A.2 Root keys | | | | | Requirement: | | | | | Root keys shall be unique per device. | | | | | [Ref: OWASP ISVS 4.6.4] | | | | | | | | | | B. Level-2 Security Requirements: | | | | | 3.5.B.1 Replay attacks | | | | | Requirement: | | | | Replay attacks shall not be possible using off-sequence frame counters. For example, in case end device counters are reset after a reboot, verify that old messages cannot be replayed to the gateway. [Ref: OWASP ISVS 4.6.5] # **C.** Level-3 Security Requirements: ## 3.5.C.1 Communication with LoRaWAN gateway Requirement: All communication between the LoRaWAN gateway and the network, join and application servers shall occur over a secure channel (for example TLS or IPsec), guaranteeing at least the integrity and authenticity of the messages. [Ref: OWASP ISVS 4.6.3] # **D. Level-4 Security Requirements:** Nil # **Section 6: Other Security Requirements** # A. Level-1 Security Requirements: #### 3.6.A.1 Private Access Point Name Requirement: Private (secure) Access Point Name (APN) shall be used to connect cellular network. # **B.** Level-2 Security Requirements: ## 3.6.B.1 Sensitive data protection Requirement: ITSAR No: ITSAR30907YYMM Page 62 of 75 Sensitive data and APIs shall be protected against Insecure Direct Object Reference (IDOR) attacks targeting creation, reading, updating and deletion of records, such as creating or updating someone else's record, viewing everyone's records, or deleting all records. [Ref: OWASP ASVS 4.2.1] # **C.** Level-3 Security Requirements: Nil # **D. Level-4 Security Requirements:** Nil # **Section 7: Messages and Alerts from the devices** # A. Level-1 Security Requirements: ## 3.7.A.1 List of alerts Requirement: Table below contains the listing of alerts that need to come from the tracking devices. These alerts are applicable for both live packets as well as the history packets. | Sr. No. | Message | Remarks | |---------|--------------------------------------|--| | i | Location Update | Default message coming from each device | | ii | Location Update (history) | Would be sent, if GPRS is not available at the time of sending the message | | iii | Alert – Disconnect from main battery | If device is disconnected from vehicle battery and running on its internal battery | | iv | Alert – Low battery | If device internal battery had fallen
below a defined threshold, indicating
that device need to get a recharge | ITSAR No: ITSAR30907YYMM Page 63 of 75 | V | Alert – Low battery removed | Indicate that vehicle internal battery is charged again | |------|--------------------------------------|--| | vi | Alert – Connect back to main battery | Indicate that vehicle is connected back to main battery | | vii | Alert – Ignition 'ON' | Indicates that Vehicle has started (ignition ON) | | viii | Alert – Ignition 'OFF' | Indicates that Vehicle has stopped (ignition OFF) | | ix | Alert – GPS box opened | Message would be generated indicating GPS box opened | | Х | Alert – Emergency state 'ON' | When any of the emergency buttons are pressed by any passenger. System should also provide location of emergency button which is pressed | | xi | Alert – Emergency state 'OFF' | When emergency state of vehicle is removed | | xii | Alert over the air parameter change | Alerts for any parameter changed over
the air/manually. Shall include the
name/value of parameter changed and
source of command | | xiii | Harsh Braking | Alert indicating for harsh braking | | xiv | Harsh Acceleration | Alert indicating for harsh acceleration | | xv | Rash Turning | Alert indicating for rash turning | | xvi | Tamper Alert | Alert indicating for device tampering | [Ref: BIS IS 16833 : 2018 A-4.2] ## **B. Level-2 Security Requirements:** Nil ## **C. Level-3 Security Requirements:** Nil ## **D.Level-4 Security Requirements:** Nil # **Section 8: Other Security Requirements** # A. Level-1 Security Requirements: #### 3.8.A.1 OTA updates #### Requirement: - a) System shall have the capability for over the air download and update of firmware as well as configuration parameters and remote administration. - b) The device parameters given below shall be configurable over the air (through SMS or cellular connectivity). The update shall be allowed only over an 'authenticated' channel, which could be: - i. Change of the Access Point Name (APN). - ii. Change of IP and port number. - iii. Setting of the primary or secondary IP. - iv. Configuring the vehicle registration number. - v. Configuring the frequency of data - vi. transmission in Ignition 'ON/OFF', - vii. emergency state. - viii. Configuring the time duration for emergency state. - ix. Capability to reset the device. - x. Command to get the IMEI of the device. ## [Ref: BIS, IS 16833: 2018 (18) and (19) and A-2.2]] #### 3.8.A.2 Restoration on loss of power #### Requirement: Vehicle tracking device shall remain operating and locally functional in the case of a loss of network access and shall recover cleanly in the case of restoration of a loss of power. ITSAR No: ITSAR30907YYMM Page 65 of 75 # 3.8.A.3 System health parameters # Requirement: The device should send status of system health parameters at configurable intervals and this threshold value should also be configurable over the air. It should be possible for system health parameters to be fetched on demand via command as set out in the table given below: | Sr.
No. | Field | Description | |------------|--------------------------------------|--| | i | Start Character | \$ | | ii | Header | The header of the packet/identifier | | iii | Vendor ID | Vendor identification header | | iv | Firmware Version | Version details of the Firmware used in EX.1.0.0 | | v | IMEI | Identified the sending unit. 15 digit standard unique IMEI no. | | vi | Battery Percentage | Indicates the internal battery charge percentage | | vii | Low battery threshold value | Indicates value on which low battery alert generated in percentage | | viii | Memory percentage | Indicates flash memory percentage used | | ix | Data update rate when ignition 'ON' | Indicates Packet frequency on ignition ON | | X | Data update rate when ignition 'OFF' | Indicates Packet frequency on ignition OFF | | xi | Digital I/O status | Inputs connected to the device. | | xii | Analog I/O status | Analog input status | | xiii | End character | * | ITSAR No: ITSAR30907YYMM Page 66 of 75 [Ref: BIS IS 16833: 2018 A-4.1] ## 3.8.A.4 IP protocols Requirement: The device should support both IPv6 and IPv4 protocols. [Ref: ER NO. TEC28732108 4.1.3] ## 3.8.A.5 Factory reset Requirement: The user shall have the ability to perform a factory reset, including the ability to delete all user data in the event of device transfer,
rental, loss, or sale to a third party. [Ref: Agelight IoT Safety Architecture & Risk Toolkit v4.0 34] # **B.** Level-2 Security Requirements: Nil # **C.** Level-3 Security Requirements: #### 3.8.C.1 Return to a secure state Requirement: If a security breach occurs or an upgrade is unsuccessful, the device shall support to return to a secure state. [Ref: ENISA Baseline recommendations for IoT IoT November 2017, GP-TM-06] # D. Level-4 Security Requirements: Nil #### Annexure-I #### **Definitions** - 1. **Administrator**: User who has the highest-privilege level possible for a user of the device, which can mean they are able to change any configuration related to the intended functionality - 2. **Application Security Verification**: The technical assessment of an application against the OWASP ASVS. - 3. **Associated services**: Digital services that, together with the device, are part of the overall consumer IoT product and that are typically required to provide the product's intended functionality - 4. **Authentication** The verification of the claimed identity of an application user. - 5. **Authentication mechanism**: Method used to prove the authenticity of an entity - 6. **Authentication value**: individual value of an attribute used by an authentication mechanism - 7. **Authorized Individuals, services, and other IoT product components**: An entity (i.e., a person, device, service, network, domain, developer, or other party who might interact with an IoT device) that has implicitly or explicitly been granted approval to interact with a particular IoT device. - 8. **Attacker**: A hacker, threat agent, threat actor, fraudster, or other malicious threat to an IoT Service. This threat could come from individual criminals, organized crime, terrorism, hostile governments and their agencies, industrial espionage, hacking groups, political activists, 'hobbyist' hackers, and researchers, as well as unintentional security and privacy breaches. - 9. **Component**: a self-contained unit of code, with associated disk and network interfaces that communicates with other components. - 10. **Constrained device**: Device which has physical limitations in either the ability to process data, the ability to communicate data, the ability to store data or the ability to interact with the user, due to restrictions that arise from its intended use - 11. **Consumer**: Natural person who is acting for purposes that are outside her/his trade, business, craft or profession - 12. **Consumer IoT device**: Network-connected (and network-connectable) device that has relationships to associated services and are used by the consumer typically in the home or as electronic wearables - 13. **Credentials**: Authentication material such as username and password, public and private keys, API keys, or certificate. - 14. **Critical security parameter**: Security-related secret information whose disclosure or modification can compromise the security of a security module ITSAR No: ITSAR30907YYMM Page 68 of 75 - 15. **Cryptographic material**: All material, including documents, devices, or equipment that contains cryptographic information and is essential to the encryption, decryption, or authentication of communications. - 16. **Cryptographic module**: Hardware, software, and/or firmware that implements cryptographic algorithms and/or generates cryptographic keys - 17. **Debug interface**: physical interface used by the manufacturer to communicate with the device during development or to perform triage of issues with the device and that is not used as part of the consumer-facing functionality - 18. **Defined support period**: Minimum length of time, expressed as a period or by an end-date, for which a manufacturer will provide security updates - 19. **Design Verification**: The technical assessment of the security architecture of an application. - 20. **Device manufacturer**: Entity that creates an assembled final consumer IoT product, which is likely to contain the products and components of many other suppliers - 21. **Device**: Endpoint device that is capable of storing, generating, and processing data. A generic IoT device will incorporate sensors, actuators and potentially a user interface. - 22. **Emergency Request/Panic Alarm/Emergency Button** A button provided in vehicle for passengers or crew members to send specialized data packet/SMS - 23. **Endpoint**: An IoT Endpoint is a physical computing device that performs a function or task as part of an Internet-connected product or service. - 24. **Endpoint Ecosystem**: Any configuration of low-complexity devices, rich devices, and gateways that connect the physical world to the digital world in novel ways. - 25. **Factory default**: State of the device after factory reset or after final production/assembly - 26. **Firmware**: Software that communicates with a device's hardware components through instructions and application interfaces. - 27. **Hardcoded keys**: Cryptographic keys which are stored on the filesystem, be it in code, comments, or files. - 28. **Hardware Security Module (HSM)**: Hardware component which can store cryptographic keys and other secrets in a protected manner. - 29. **Initialization**: Process that activates the network connectivity of the device for operation and optionally sets authentication features for a user or for network access - 30. **Initialized state**: State of the device after initialization - 31. **Input Validation**: The canonicalization and validation of untrusted user input - 32. **IoT ecosystem**: A collection of interconnected systems that includes IoT systems, and other systems, such as web and mobile applications. ITSAR No: ITSAR30907YYMM Page 69 of 75 - 33. **IoT system**: A system comprising interconnected IoT devices and their software and hardware components. - 34. **Logical interface**: Software implementation that utilizes a network interface to communicate over the network via channels or ports - 35. **Manufacturer**: Relevant economic operator in the supply chain (including the device manufacturer) - 36. **Malicious Code**: Code introduced into an application during its development unbeknownst to the application owner, which circumvents the application's intended security policy. Not the same as malware such as a virus or worm! - 37. **Network interface**: Physical interface that can be used to access the functionality of consumer IoT via a - 38. **One-time Password (OTP)**: A password which is uniquely generated to be used on a single occasion. - 39. **Password-Based Key Derivation Function 2 (PBKDF2)**: A special one-way algorithm used to create a strong cryptographic key from an input text (such as a password) and an additional random salt value and can therefore be used make it harder to crack a password offline if the resulting value is stored instead of the original password. - 40. **Personal data**: Any information relating to an identified or identifiable natural person - 41. **Personally Identifiable Information (PII)**: is information that can be used on its own or with other information to identify, contact, or locate a single person, or to identify an individual in context. - 42. **Physical interface**: Physical port or air interface (such as radio, audio or optical) used to communicate with the device at the physical layer - 43. **Privileged locations**: An area in hardware or software that requires elevated access and permission sets. - 44. **Remotely accessible**: Intended to be accessible from outside the local network - 45. **Security module**: set of hardware, software, and/or firmware that implements security functions - 46. **Security update**: Software update that addresses security vulnerabilities either discovered by or reported to the manufacturer - 47. **Sensitive data**: data that may be used for authentication or may help to identify the user, such as user names, passwords, PINs, cryptographic keys, IMSIs, IMEIs, MSISDNs, or IP addresses of the device, as well as files of a system that are needed for the functionality such as firmware images, patches, drivers, or kernel modules. - 48. **Sensitive information**: Data that requires protection against unauthorized access such as personal identifiable information (PII), protected health information (PHI), card holder data, private keys, credentials, and personal data as defined by The EU General Data Protection Regulation (GDPR) ITSAR No: ITSAR30907YYMM Page 70 of 75 - 49. **Sensitive security parameters:** Critical security parameters and public security parameters - 50. **Telemetry**: Data from a device that can provide information to help the manufacturer identify issues or information related to device usage - 51. **Transport Layer Security (TLS)**: Cryptographic protocols that provide communication security over a network connection - 52. **Trust Anchor**: In cryptographic systems with a hierarchical structure, a trust anchor is an authoritative entity for which trust is assumed and not derived. - 53. **Trusted Computing Base**: A Trusted Computing Base (TCB) is a conglomeration of algorithms, policies, and secrets within a product or service. The TCB acts as a module that allows the product or service to measure its own trustworthiness, gauge the authenticity of network peers, verify the integrity of messages sent and received to the product or service, and more. The TCB functions as the base security platform upon which security products and services can be built. A TCB's components will change depending on the context (a hardware TCB for Endpoints or a software TCB for cloud services), but the abstract goals, services, procedures, and policies should be very similar. - 54. **Two-factor authentication (2FA)**: This adds a second level of authentication to an account log-in. - 55. **Unique per device**: Unique for each individual device of a given product class or type - 56. **User**: Natural person or organization - 57. **X.509 Certificate**: An X.509
certificate is a digital certificate that uses the widely accepted international X.509 public key infrastructure (PKI) standard to verify that a public key belongs to the user, computer or service identity contained within the certificate. - 58. **Internet of Things**: The Internet of Things describes the coordination of multiple machines, devices, and appliances connected to the Internet through multiple networks. These devices include everyday objects such as tablets and consumer electronics, and other machines such as vehicles, monitors, and sensors equipped with machine-to-machine (M2M) communications that allow them to send and receive data. - 59. **IoT Service**: Any computer program that leverages data from IoT devices to perform the service. - 60. **UICC**: A Secure Element Platform specified in ETSI TS 102 221 can support multiple standardized network or service authentication applications in cryptographically separated security domains. It may be embodied in embedded form factors specified in ETSI TS 102 671. ITSAR No: ITSAR30907YYMM Page 71 of 75 #### **Annexure-II** ## Acronyms 2FA - Two Factor Authentication API - Application Program Interface APN - Access Point Name AVL - Automatic Vehicle Location Tracking BT - Bluetooth CLP - GSMA's Connected Living Programme CPU - Central Processing Unit DDoS - Distributed Denial of Service EEPROM - Electrically Erasable Programmable Read-Only Memory ENISA - European Union Agency for Network and Information Security ETSI - European Telecommunications Standards Institute GSMA - GSM Association HTTP - Hypertext Transfer Protocol. I/O - Input-Output IoT - Internet of Things IoT SF - Internet of Things Security Foundation IP - Internet Protocol LAN - Local-area Network LoRA - Long Range Radio MFA - Multi Factor Authentication MSISDN - Mobile Station International Subscriber Directory Number NB-IoT - Narrow Band-Internet of Things NIST - National Institute of Standards and Technology OEM - Original Equipment Manufacturer OS - Operating System OWASP - Open Web Application Security Project PC - Personal Computer PII - Personally identifiable information PSK - Pre-Shared Key RAM - Random Access Memory ROM - Read Only Memory SMS - Short Message Service SSH - Secure Shell Protocol TCB - Trusted Computing Base TLS - Transport Layer Security UICC - Universal Integrated Circuit Card Wi-Fi - Wireless Fidelity ITSAR No: ITSAR30907YYMM Page 73 of 75 # **Annexure-III** #### **List Of Submissions** List of undertakings to be furnished by OEM for Vehicle Tracking Device security testing - 1) Hardcoded authentication credentials (Against test case 2.1.A.2) - 2) Trusted Computing Base (Against test case 2.1.C.2) - 3) Root of Trust (Against test case 2.2.B.2) - 4) Consistent authentication security (Against test case 2.2.B.3) - 5) Cryptographic keys (Against test case 2.8.A.2) - 6) Cryptographic key chain (Against test case 2.8.A.3) - 7) Debugging and testing Technologies (Against test case 2.9.B.2) - 8) Vulnerability management related policies (Against test case 2.10.A.1) - 9) Review of device OS/ source code (Against test case 2.10.C.1) - 10) Back doors (Against test case 2.13.A.3) ITSAR No: ITSAR30907YYMM Page 74 of 75 #### Annexure-IV #### References - 1. BIS IS 16833:2018 Automotive tracking Device and Integrated systems - 2. AIS-140 Intelligent transportation systems (ITS) - 3. ENISA Baseline Security Recommendation for IoT November 2017 Baseline Security Recommendations - 4. ETSI EN 303 645 V2.1.0 (2020-04) Cyber Security for Consumer Internet of Things: Baseline Requirements - 5. ETSI TR 102 898 V 1.1.1 M2M communication - 6. GSMA (CLP.11, CLP.12, CLP.13) IoT Security Guidelines - 7. IoT SF IoT Security assurance framework Release 3.0 November 2021. - 8. ISO/IEC 27001 Information security management systems (ISMS). - 9. NIST 8259A IoT Device Cybersecurity Capability Core Baseline - 10. NIST 8228 Considerations for Managing Internet of Things (IoT) Cybersecurity and Privacy Risks. - 11. NIST Cybersecurity Whitepaper - 12. OWASP Application Security Verification Standard 4.0.3 - 13. OWASP IoT Security Verification Standard ISVS - 14. TSDSI STD T1.3GPP 33.117 17.2.0 V1.2.0: Catalogue of general security assurance requirements ITSAR No: ITSAR30907YYMM Page 75 of 75