

Smart Campus Implementation with ISO/IEC/IEEE 18880, based on "Internet by Design"

Hiroshi ESAKI, Ph.D.,

Professor, The University of Tokyo
Director, WIDE Project
Director, Green University of Tokyo Project
Board of Trustee, ISOC

AWS installation in city of Hyderabad

6 WMO-Standard AWS and 18 Compact AWS

Local rain detection in 2014

June 15, 2014

(a) 18:38 Loyola Academy 70.1 [mm/h]

(b) 18:55 IMD Begumpet 63.9 [mm/h]

(c) 19:10

NGRI 55.2[mm/h], CGWB 36.7[mm/h]

18:58, July 7, 2014

Gokaraju Rangaraju Institute of **Engineering Technology** (GRIET)

136.4 [mm/h]

Smart Energy Management at The Univ.of Tokyo in 2011

	Peak (2010)	Peak (2011)	Total (2011)	RoI
Major 5 campus	66 MW	69%	75%-78%	less than
	(\$60M/yr)	(Δ31%)	(22%-25%)	1 month
Eng. No2	1 MW	56%	69%	2 yrs
Bldg.	(\$1M/yr)	(Δ44%)	(Δ31%)	

[Contributions]

- 1. Multi-Vender for sustainable innovation
- 2. Global Standards for procurement

With Smart Phone

Digital BUILMO

Global/International collaboration

1. Beijing team (e.g., Tsinghua Univ., China Telecom), China

- (*) Including Standardization: IEEE1888
- 2. Chulalongkorn University, Thailand
- 3. IIT Hyderabad, India

भारतीय प्रौद्योगिकी संस्थान हैदराबाद

- 4. UCB
- 5. SGIP
- 6. NTU(
- 7. Vietr
- 8. iDA in Smart Building Collaboration
- 9. UMPS/LIP6/CNRS in Paris, France

IIT Hyderabad

Strategic use of Cloud & Data Center,

Computers & Facilities into&on the Net (Cloud/DC)

Strategic Energy Saving in Tokyo?

- 1. Move and accommodate servers in the offices into iDC, hosting service, will lead to 15% energy saving
- 2. Vitalize the servers and integrate into a single physical machine, i.e., cloud computing, will lead to 40% energy

Strategic Energy Saving in Tokyo?

- 1. Mo
- 2. Vitalia machin saving.

CO₂ Emissio

nmodate servers in the offi will lead to 15% energy sa

Energy "Consumer"

to "Saving", i.e.,
"Nega-watt"
by Data Center

ergy

hosting

ting

Copyright(C) 2007 TSUKUI International Inc. All Rights Reserved.

Tokyo Institute of Technology, Green Hills, No.1 Bldg

Best Current Practice for Commercial Building and for Microsoft

- 1. Facility management control by ISO/IEC/IEEE18880
- 2. Servers go to Data Center = No server room in the bldg

SEIKO Solutions
Factory in Thailand

✓ Office
✓ Factory
✓ Agriculture
✓ CEMS (City)

{New} Implication of Data Center?

- 1. Could change from consumer to supplier
 - Possibility of DC power supply
- 2. 72 hour operation, after electric black-out
- 3. Power-generator function, including Hydrogen and heat.
 - ✓ Critical Infrastructure for IT/ICT
 - ✓ De-centralized energy source
 - ✓ {short-term} õenergy securityö

Shared Multi-Purpose Internet-based **Eco System for** Sustainable Growth

New Services